J h.w v Marines

The Fowe, Tho Prapd

United States Marine Corps
MAGTTF Staff Training Program
2084 South Street
Quantico, VA 22134-5001

Active Server Pages 3.0

Tutorial Manual






MAGTF Staff Training Program
April 2004






ASP 3.0 Tutorial Manual

Table of Content
L. HTIML BASICS .uuuuiiiiiiinniicissnniecssssssscsssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssass 3
A. BASIC STRUCTURE OF AN HTML PAGE .....cooiiiiiiiiiiiniiiiecniccece e 3
B T AGS ettt ettt eneas 4
C.  TEXT FORMATTING ....ctttiuiiieiiieeiite ettt ettt et ettt e st e et e sabte e sabteesabeeesanee s 4
1. Heading styles <H> ...</H>.......ccccccouiimiiieiiieeiie et 4
2. Paragraph <P> ... </P> ...t 5
3. Font SFONT> ...</FONT> ....c.oooooiiiieeee et 6
A, Bold Sb>. . . b> e 6
b, THAlIC <> </ e 6
C.  Underline <u>...</U> oo 6
d.  Fontsize <SIZE>...</SIZE>......cooiiiiiiiiieieeieeeeeeeeeee et 6
4. BUEAK SBR™.......ooioiiieeee e 7
D TABLES ..ttt e s 8
1. Table Tag <Table>...</Table> ..........c..cccccccooimiiiiiiniiniiiiiiiiiiieeeee 8
2. ROW STR> ...</TR> ..o 9
A, ROW ALIGNMENT ..o et 9
b.  Vertical ALINMENT.......ccoeiiiiiiiieiieie ettt s 10
C. Background Color.........ccuiieiiieiiiiieeiieeciie ettt e 10
3. Column <TD>...</TD> ....ccooooiiiiiiiiiee et 11
a. Column and Vertical AlIgNMENt..........cccueeeiiiieiiieeiie e 12
b.  Background Color........cccueiiiiiiiiiiieiecitee e 12
4. Heading <TH> ...</TH> ......ccccccoctiiiimiiiiiiiiiiiii ettt 13
B LISTS e et s 13
L. UnOrdered LiSt................ccccooocuviiiiiieiiiieeieeeeeeeee e 13
Q. The SUL> TaZ .eiiiieiieiiieiiece ettt ettt ettt et ae e e saneeneeas 13
L. Type AIIDULE ...c.evieciieceeee e e e e 14
il.  Nesting Unordered LiStS .........ccccieviiierieiiiienieeiieieeieesee e 14
2. OFAEIFOA LISt ... 15
D, The SOL> TaZ c.viiiiieiieieeieeee ettt sttt et e 15
L Type AIIDULE ...c.evieiiiecie et e e e et 15
il.  Nesting Ordered LiStS .........cecieriiiiierieeiierie ettt 16
1il. Start ATIIDULE. ....ceoeeieiieiiiee e 16
F. HTML FORMS ..ottt ettt sttt et st s 17
L. The SFORM> TAZ.....cc.ocoiiiiiiiiiiieee ettt 18
2. NAME QttriDULE ....ccvvieiiiiiieiecieee ettt 18
D, ACTION QttrIDULE ...c.eeenvieiieiieie ettt e 18
C.  METHOD attribULE ....cc.eeeiieiiieiieeieeiee ettt 18
2. <INPUT TYPE = “TEXT 7> TOG.....ccoioiiiiieiieie e 19
Q. TYPE AUITDULE ..ottt et 19
b, NAME Qttribute .....cooviiiiiiiiiie e 20
C.  SIZE attribULE....cueieiieeiiieiieeie ettt ettt seae e 20
3. <INPUT TYPE = “PASSWORD "> TQg ......ccccvvvveeiiieiiiiiiieeeeeee e 21
4. DFOD DOWR LISES ..ottt et eenaaeeennae e e 21
. The <SSELECT™ Ta@.....ccciiieiiieeiiieeiee ettt eteeestee e eteeesvee e e sseseeeaaeesnnee e 21

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

1. NAME QttriDULE ....oeeeiiiiiiiccieie et 22
TV V7 DA 155 4 1)1 1 ¢ HRU OSSR 22
1ii. MULTIPLE QttriDULE ......oeeiiieiiiiieeeieee e 22
b, The <OPTION> TaZ....ccoiiiiiiiciieiiecieeieecte ettt ettt eve e eee 22
1. VALUE QttriDULE......cooiiviiiiieiieee e 22
5. The <INPUT TYPE = “SUBMIT "> TQG.......ccccceeviiiiiiiiaiieieeeeee e 23
Q. TYPE QttriDULE ....ovveeiieiieeeceeeeeeeeee e e e 23
D, NAME QttriDULE ..ooooeiiiiieieieeee e 23
C.  VALUE QttriDULE......coooiviiiiieiieee e e 23
6. The <INPUT TYPE="IMAGE"> TQG ......cccceeeveiiaiaiiieiieeeeeee e, 24
7. The <INPUT TYPE="RESET "> TAZ ......cc.cccvevvveeereeseeereeseeeeeeeeeeeeiae e 24
I1. GETTING STARTED 26
A. WHAT DO WE NEED TO CREATE A WEB SITE?.....uuvtiiiiiiiieeeeiieeeeeiieeeeeevteeeeeivaee s 26
B. SETTING UP THE ENVIRONMENT ......uutttiiiieiiiiiiiiiteeeeeeeeeeetnrreeeseeeeesesnssssesseeseessasnns 26
L. IIS 5.0 0VEFVIEW ... 26
PV 113 7 1 =15 () 4 DO OO RRR 26
C. CREATING VIRTUAL DIRECTORIES ......ccccitiiieeiiurireeanrreeeeeiraeeeessseeeessssseessnssseeasnnns 27
1. Creating Virtual Directories With the Wizard.................ccccccoecveviiiiiceannnnnnn. 28
2. Creating Virtual Directories Without the Wizard..............c....cccevvcvvevcevennnnan. 31
III.  ASP OVERVIEW ....eeieccnnneieccnnnneecccssnnsecsssssssscssssssssesssnsssssssssssssssssssssssssnas 33
A. WHATIS ACTIVE SERVER PAGES? .....coiiiiiiiiiie ettt 33
1. Composition of Active Server PAges?..............cccccuieviiiieniiioiniiniaiinieneaeens 33
Q. ASP DEIIMILETS ....vveeiiiiiiiieeeieee et eeaee e e et e e e e e e eeraeeeeenns 33
b.  Setting the ASP Scripting Language............ccccvveviieeiiieeiiieecieeeieeeee e 33
c. Variables, Operators, and Statements ............ccceeveerciierienieenieeieenie e 33
d. Active Server Components and ObJectS .........ccccuererieeeriieeiiieeieeciiee e 33
2. RUNNIAG ASP SCHIDLS ..ot 34
IV.  LAB 1: YOUR FIRST CODNE........ccccccrrrrrrneeeeecccsssssssssseeeecccssssssssasasesssssssossassans 37
A, HELLO WORLD! ..ottt e et e e e e e e etraaae e e e e e e e eeanns 37
1. Creating an HTML PaAZe ...............cccccoouvuuiiiiiiiiiieeiiie e 37
2. Creating your First ASP PAGe.............ccccoovuiiiiiiiaiiiieiieeee e 38
V. PROGRAMMING AND SCRIPTING IN VBSCRIPT ......cccccvrrrrueeereeccccrssnaanene 41
A. DIFFERENCES BETWEEN VISUAL BASIC AND VISUAL BASIC SCRIPT ..........cccceeunen. 41
B.  VARIABLES AND DATA TYPES ...ooiiiiiiiiieeiiee ettt e e avaea s 41
L DAEA EYPES ..o 41
2. VAFIADIES ... 42
a.  Declaring Variables .........cccoooiieiiiiiiiiieeie e 42
b.  Naming ReEStrICONS. ....ccueeiiiiiiieiieeiieeieecie ettt eve et ere e sere s eee 44
C.  CONStANIS.....cooiiiiiiiiiii 44
C. CONTROL STRUCTURES......ccciutttieeitreeeeeitreeeeaireeeeessseeeeesssaeeeesssseeseassssseeesnssseeeannns 44
Lo Jf o TREM..EISE ... 45
2. SCLECE CUSE....coooiiiiieeeeee e 46
D.  LOOPING STRUCTURE ....uvvviiiieeiieicitiireeeeeeeeeeesiitteeeeeeeeeeeeeisrreseseseeeessessrssesessseessesonns 46
ii MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

1 FrOT .. INCXT e e 47

20 D0 iLOOP ..o e 48

3 WVRELE ... W ORI, ..ottt et 48

VI PROCESSING USER INPUT REQUEST (REQUEST OBJECT).......ccceee. 50

A.  THE REQUEST OBIECT ..uvvuuuuuuueettueesuesuueseseseessseesssssesssssssssssssssssssssssesseses—... 50

B. HOW TO GET DATA FROM THE USER TO THE SERVER?.....ctuueiieeeeeeeeeeeeeeeeeeeeeeeens 50

L. HTML FOFBUS oottt ettt 50

C.  PROCESSING RESULTS . .ettttuueeeteteeeeeeeeeeeteaeeeeeeaeeeeeaaeeeeeaaeseeenaeeeeanaeeeranaesennnnns 52
VII. LAB2: USING A FORM TO GATHER USER INPUT AND DISPLAYING

RESULTS aeeceeeteeeeeneeeecesecseeressssssssssssssssssssssssssssssssssssssssssssssssssssssssss 53

VIII. SESSION OBUECT ...uuueeeeeieeereeeeeseeeescseessessssssssssssssssssssssssssssssssssssssssssssssssns 57

A, SESSION VARIABLES ...ttt ettt e e et e e e e eee e e e e eee e e e e eeaeeeeeaaeeeeeaaeeeenannans 57

1. Assigning SesSion Variables ..............cccccoovviiiiiiieiiiieiiieeseeeeee e 57

2. Clearing SesSion VariabIes...................ccccoceeiiiiiniiiiiioiiiiiiiiienieeeeeee e 57

IX. LAB 3: USE OF SESSION VARIABLES ...eteeeecceeeeneeeeseeeeesssessessssssssssssnnns 59

X. RESPONDING TO THE USER (RESPONSE OBJECT) ...ccccceersunecsnsecsnscssannes 61

A. HOW TO SEND OUTPUT TO THE USER’S BROWSER .......eettttiuiieeeeeeeeiieieeeeeeeeeeenennnnns 61
B.  THE RESPONSE OBJIECT .. cetuteettee ettt e eeeee e e eeeee e e eeraeeeeeeaeeeeeaaeeeeraaaeeenanans 61

C.  RESPONSE.WRITE ...uuuiiiiiiiiiiiieeee et eeeeaeeeeee e e e e e ettaaeeeeeseeeeesaaasaeesessessasanaaeeseeeeens 61

D, RESPONSE. REDIRECT .uetttiet ettt ettt e e e eee e e e eee e e e e eeaeeeeeaaeeeeeaaeeeeeanns 63

XI. LAB 4: RESPONDING TO THE USER .....ueeeeeereeeeereeeseeeessccsssssssssssssssnnns 65

XII. DATABASE OVERVIEW ....iieetireeennnecseccssssesssssssssssssssssssssssssssssssssssssssssssne 67

A, PLANNING A DATABASE ..ovuueeeeeeeetteeeeeeee e e e ettt eeeeeeeeeeeeesaaeeeeesesseesaannaeesesseessnnnans 67

L. DAIADASE STTUCTUTC ..ottt et e e et e e eea e e 67

2. Building the database in MicroSOft ACCESS.........cccccouevieeeceeiieeiieeieaeeeeeeenees 68

a.  Creating a Databse .......cccueiiiiiieiiiecee e 68

b, Creating a Table......ccoooiiiiiiiiiiie e 70

XII1. INTRODUCTION TO STRUCTURED QUERY LANGUAGE (SQL).... 73

A, SQL STATEMENTS ....cetiiiititeeeiriteeeetteeeesttteeeessseeesesssseeeesssseeeeassssseesesssseesessseeeens 73

1. The SELECT SAUOMERL......cc..ooeeeeeeeeeeeee ettt e et e e 73

A, The WHERE ClaAUSE ... oottt e e e et ee e e aee e e e e eteaeeeeeaaeeeenans 74

b.  The ORDER BY CILAUSE ...eveeeeeeeee e eeeeaeee 74

XIV. ACCESSING A DATABASE. ... ceeeereeeeereeeseereeseeesssssssssssssssssssssssssssssssssssssses 77

A.  THE CONNECTION OBJIECT cttuuueeeeeeeeeeeeeeeeeeeeeeeetenaeeesseeeeseeeennaeesesessseenennneeeseseeeees 77

B. INCLUDING ACTIVEX DATA OBJECTS (ADO) CONSTANTS ...ccceeeieeeieeieenireeieene 77

C. CREATING AN ODBC CONNECTION ...ctttttueeeeeeeeetuteeeeeeeeeeeeeenneeeeeeeseeemennaeeeeeeesees 78

D. ODBC DATA SOURCE NAME (DSN)-LESS CONNECTION ......cccueerueereeanieennreeeeennns 78

L. DSN VS DSN-LESS ..ottt 78

E.  THE RECORDSET OBJIECT enutetttue ettt e e eeeee e e e eeeee e e e eeeaeeeeeeaeeeenaaeeeereaaeeeeanns 79

1. The Beginning of File (BOF) ODBJecCt ............cc.ccocueviueeicuiieiiieeiiieeeieeeeeee e 80

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

2. The End of File (EOF) ODBJECt ..........ccocouveaeeaiiiieiieeeee e 80

F. CONNECTING TO A DATABASE .....cuttitiiiieeeeeecctitetee e e e e eeetteee e e e e e e eesntvareseaaaeeeeenanes 81

1. Opening @ TADIe..................cccoevieeieiiieiieeee e 81

2. 8electing ReCOVS.............cccocuiiiiiiiiiiiiiiieiitet e 82

3. lterating thorough a ReCOVdSerl...............cccoueeviuiiiiiiiiiiiieiieeeeee e 83

4. Checking for Matching ReCOVdS ..............c.cccccoviiiiiniiiiiiiiiiiiieeiieeeeeee 84

5. Closing Connections and ReCOFASELS...............cccocvcveevieiiiiieiiieeeiieeeie e, 87

G. UPDATING A DATABASE ...ttt e ettt e e e e eettar e e e e e e e esaarrareeeaeeeeennrranenas 88

1. AAAING FECOVAS ..o 88

2. UPpdating FeCOTS .........cccocouiiiiiiiiiiiiiiiit et 88

3. Deleting RECOVAS........cc..cooveeeeiieeiee et 89

XV. LABS5: DATABASE CONNECTION.....tiieneeeeccsssnseeccssnseccssansascsssnsssccsses 91

XVI. PUTTING IT ALL TOGETHER .......uuccccreeeerrreeeeecrrseneeccssansecsssssssecssssssescsssnns 97

A, LINKING PAGES ....ciiieiiititiiiieeeeeeeectitteeeeeeeeeeettaataseaaeeeessnssssasesesaeesesssrsseseaeaeesannnes 97

XVII. LAB 6: ALPHA ROSTER (FINAL PRODUCT)....ccccccceeecruneeccnncccnsecconsenes 99

APPENDIX A. FINAL PRODUCT DESCRIPTION........cccccuueee. 101

APPENDIX B. VBSCRIPT REFERENCE .......uuiieceeeeecrrsnnecccsssseeecssssseescssssseccsses 107

APPENDIX C. HTIML TAGS ... teieccrneeeccrsneeccssssseeccssansecssssnsssssssssssessssnsssesssnsssessss 119

APPENDIX D. ASP OBJECTS auueeeeeereeeecerseneeccsssseeeccssssseecsssssasesssssssssssssssssssssssasssses 125

APPENDIX E. HELPFUL WEBSITES........u i tiecrneieccnsnneeccsssnseecsssnssecsssnnseccssns 135

POINT OF CONTACGTS coueeeieerrreeeeccrrneeeccsssseeccssssseecsssssssssssssssssssssssssssssssssssssssssssssnnas 137
v MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

Table of Figures
Figure 1 Basic HTML OULPUL......cccuiiiiiiieciieceiie ettt e e eaeeesaae e 4
Figure 2 HTML headings.......ccoeieriiiiinieiieieniteieeeseeie ettt st st 5
Figure 3 Text Formatting, FONt..........ccciiiiiiiiiiicce e 7
Figure 4 Colors in an HTML Table ........cccceeoiiiiiiiiiiinienieicceeeeeceseeeeee e 11
Figure 5 HTML Table (2 Rows, 2 COIUMNS) .....ccuveeeiiieeiiieciieeciie e 12
Figure 6 HTML Table with Headers and Caption............ccccecevieneiniinienieneniienieneens 13
Figure 7 HTML FOrm COntrols ........cccviiiiuiiiiiiieeiie e eeiee et esiee e veeeiaeeeaaeeenaee s 17
Figure 8 Windows Components Add/Remove dialog window ...........cccceeeevuenvenenniennne 26
Figure 9 Internet Information Manager Window ...........cccccuveeviieeiiieeiieenieeeeeeeiee e 27
Figure 10 Creating Virtual Directories with the Wizard ..........c..ccocooviviiniininiininennn. 28
Figure 11 Naming your virtual directory using the wizard...........c.ccceecvvevvirencieenciieennnn. 29
Figure 12 Specifying the directory for the alias.........ccccovceeviiiiniiiniininieee 30
Figure 13 Setting Access PEermiSSION.......cccuvieeiiiiiiieeiieceiie e e 30
Figure 14 Creating a virtual directory without the wWizard...........ccccceoevieninniniencnniennns 31
Figure 15 Naming the Alias and assigning Access permissions without the wizard........ 32
Figure 16 ASP COMPOSILION .....ocuiiiiiiiiriiiieeieeiiesie ettt sttt sttt st ae e 34
Figure 17 RUNNING ASP SCTIPLS..ccuviiiiiiieiiieeciie ettt eeaee e 35
Figure 18 Hello World! Web page........cccuiiiiiiieiieiiieeeeee et 37
Figure 19 Hello World! ASP Page.....c..eieeiieeiiieeieeeee ettt e 39
Figure 20 HTML FOIM ..c..oiiuiiiiiiiiiiieecteeeesee ettt s 51
Figure 21 Lab 2 Using a Form EXample..........ccccocovvieeiiiiniiiieiie e 54
Figure 22 Lab 2 ResSponse t0 the USET ......cc.covuiriiiiiiiirierieieeieseeeeeseeeee e 55
Figure 23 Lab 3 Session Variables ..........cccvieiiiiiiiieeeiieeciie et 60
Figure 24 Creating a new Microsoft Access Database ..........cccoceeveeiiniieniencniiniinenns 69
Figure 25 Naming and saving the new database in ACCESS .......eevvvriercuiieecrieeniieeeiieeeeen. 69
Figure 26 Access Main WINAOW..........coeiviiiiiriiniiiieniereeieetesieee ettt 70
Figure 27 Table Desi@n VIEW ......cccuiieiiiieiiieeiiieeiee ettt eeee et saae e svaeeenee s 70
Figure 28 Adding Information into the Database .............cccceeiiniiiiiiiiniiniiieieceee 71
Figure 29 Selecting Records from a Database...........ccceeeviieeciiiieiiiecieecie e 82
Figure 30 Lab 5 Connecting to a Database and displaying results...........ccccccevvueerirennnnnn. 95
Figure A- 1 Login Page......cc.coiiiiiiiiiiiiiiiiecee et 101
Figure A- 2 Alpha ROSEEr......ccoiiiiiiiieiieee ettt e 102
Figure A- 3 Detail Information ...........cceeieriiiiiiiiniinieeeeeecee e 102
Figure A- 4 Change Information............cccccuveeiiieeiiie e e 103
Figure A- 5 Updated information ...........cccoeeeveiiinieninienieiecenieeeeseee e 103
FIUIE A- 6 SCATCH ....coiiiieiie ettt e et 104
Figure A- 7 DElete USET ....cc.uiiuiiriiiiiiiieieeieciteie ettt s 104
Figure A- 8 Add Kid ......ooieiieieiee et 104
Figure A- 9 Search ReSUILS .......coeiiiiiiiiiiiiiieicieeeee s 105

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

vi MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

List of Tables

Table 1 NAmMeES Table StIUCTUTE. ...ovveennee ettt et e e e e e e e e e eeereaaeeeaeeeee 68
Table 2 Names Table Data.........oooviiiiiiiiiii 68

MAGTF Staff Training Program

April 2004 Vi



ASP 3.0 Tutorial Manual

viii MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manua

Active Server Pages 3.0

Tutorial Manual

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

2 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

I. HTML Basics

A. Basic Structure of an HTML page

HTML (Hypertext Markup Language) is the language used to create web documents.

It is the primary language for formatting web pages. With HTML you describe what a
page should look like, what types of fonts to use, what color text should be, where
paragraph marks come and many more aspects of the document.

HTML defines the syntax and placement of special instructions that aren’t displayed, but
tell the browser how to display the document’s contents. It is the job of the browser that
requests the HTML file to format the page according to the various tags included in the
HTML. It is also used to create links to other documents, either locally or over a network
such as the Internet.

All HTML documents are created by using a set of tags. Tags have beginning and ending
identifiers to communicate to the browser the beginning and ending text that is to be
formatted by the tag in question. The tags have an opening and a closing tag. Each tag is
enclosed with the "less than" (i.e. <) and "greater than" (i.e. >) sign.

Opening tag <>

Closing tag </>

HTML lets you create structured documents. The heading commands separate and
categorize sections of your documents. It also has commands to format and display text,
display images, accept input from users, and send information to a server for a back-end
processing.

Each document has a /ead and a body, delimited by the <head> and <body> tags.
The head is where you give your HTML document a title and where you indicate other
parameters the browser may use when displaying the document. The body is where you
put the actual contents of the HTML document. This includes the text for display and
document control markers (tags) that advise the browser how to display the text.

An HTML document consists of text, which defines the content of the document, and
tags, which define the structure and appearance of the document. The structure of an
HTML document is simple, consisting of an outer <ht m > tag enclosing the document
head and body:

- Opening tag

<HTML>
<HEAD>
<TITLE>Barebones HTML Document</TITLE>
</HEAD>
<BODY>
This illustrates, in a very <i>simple</i> way,
the basic structure of an HTML document.
</BODY>

< >
/HIML> 4— Closing tag

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Notice the beginning of the <htmlI> tag is closed at the end of the document by it’s
counterpart closing tag </html>.

3 Barebiones HTHL Bocurment - Micrmsell Inbernet Explover provided by ATET WorkiNet Service =181 x1
Fle Bt Vew Fovrkes Took Heb [ |
= - - DA Y Dsemch (afFevortes Preds (] By S - (=) g
Acddress [ 0y ryotomalchrssestIT MEF ASP chavs docusnert sATHL Barsbaons. b =] e k™
Thes Mustrates, in a very simple way, the bane structure of an HTML document ]

] ooen = My Comgurer

Figure 1 Basic HTML Output

B. TAGS

The tag marks a portion of text for special treatment by the browser. That treatment may
be anything form make the next character bold, to treat the following line as code.

For the most part, HTML document tags are simple to understand and use, since they are
made up of common words, abbreviations, and notations. The HTML standard and its
various extensions define how and where you place tags within a document.

Every HTML tag consists of a tag name, sometimes followed by an optional list of tag
attributes, all placed between opening and closing brackets (< and>). The simplest tag is
nothing more than a name appropriately enclosed in brackets, such as <head>. More
complicated tags contain one or more attributes, which specify or modify the behavior of
the tag. Tags are not case-sensitive. There's no difference in effect between <head>,
<Head>, <HEAD>, or even <HeaD>; they are all equivalent.

C. Text Formatting

1. Heading styles <H>...</H>

HTML recognizes six levels of heading, written as <h1> through <h6>. The
number signifies the position of the heading content in a hierarchy, where the smaller
number mean that the content is higher in the hierarchy.

<HTML>

4 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<HEAD>
<TITLE>HTML Document Test Headings</TITLE>
</HEAD>
<BODY>
This illustrates the different types of headings of an
HTML document.

<H1> Heading 1 </H1>
<H2> Heading 2 </H2>
<H3> Heading 3 </H3>
<H4> Heading 4 </H4>
<H5> Heading 5 </H5>
<H6> Heading 6 </H6>
</BODY>
</HTML>

/3 HTML Document Test Headings - Microsoft Internet Explorer provided by AT&T WorldNet Service =18 x|
Fle Edit Wiew Favorkes Tools Help ‘
d=Eack - = - @ A | D search GHFavortes GhMeda (B | By S EN:]

Address [ D:ayakamalclasses| 11 MEF ASP class documentsiHTHL Headings.html =] peo ‘L\r\ks ”‘
This illustrates the different types of headings of an HTML document. =
Heading 1
Heading 2
Heading 3
Heading 4
Heading 5
Heading ¢

=
€] pare [0 [ my computer
Figure 2 HTML headings

2. Paragraph <P>...</P>

Paragraphs allow you to add text to a document in such a way that it will
automatically adjust the end of a line to suit the window size of the browser in which it is
being displayed. Each line of text will stretch the entire length of the windows.
Paragraph tags can contain child tags, such as text formatting commands and a table.

<HTML>
<HEAD>

<TITLE>HTML Document Paragraph Headings</TITLE>

MAGTF Staff Training Program 5
April 2004



ASP 3.0 Tutorial Manual

</HEAD>
<BODY>
This illustrates the paragraph tag of an
HTML document.

<p> paragraph 1 </p>
<p> paragraph 2 </p>
<p> paragraph 3 </p>

</BODY>
</HTML>

3. Font <FONT>...</[FONT>

Used to modify the characteristics of the characters.

a. Bold <b>...</b>

The <b> tag explicitly boldfaces a character or segment of text that is
enclosed between it and its corresponding </b> end tag.

b. Italic <i>...</i>

The <i> tag renders the enclosed text between it and </i> end tag into
italic or oblique typeface.

¢. Underline <u>...</u>

This tag tells the browser to underline the text contained between the
<u> and the corresponding </u> tag. The underlining technique is simplistic, drawing
the line under spaces and punctuation as well as the text.

d. Font size <SIZE>...</SIZE>

Changes the tag text font size to the specified size. It is a number.
size=value

6 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

; HTML Document Fonts - Microsoft Internet Explorer provided by AT&T WorldNet Service

File Edit Wiew Favorites Tools Help ﬁ

d=back = - @D A | Qusearch [EFavorites fveda (4 ‘ B S EN

Address I@ D:hayalamatdasses\IIl MEF ASP dass documentsyHTML Fonts, html j ) | Links

This illustrates the Font tag of an HTWL document

paragraph 1 in bold font and size 8

paragraph 2 in italics font and size 5

aragraph 3 underlined and size 2

-
|2:| Done | ,_ ,_ ‘@‘ My Computer

Figure 3 Text Formatting, Font

4. Break <BR>

The <br> tag interrupts the normal line filling and word wrapping of paragraphs
within an HTML document. It has no ending tag, but simply marks the point in the flow
where a new line should begin.

An example that brings all the previously discussed tags together:

<HTML>
<HEAD>

<TITLE>HTML Document Fonts</TITLE>
</HEAD>

<BODY>

This illustrates the Font tag of an HTML
document.

<FONT SIZE = 8>

MAGTF Staff Training Program 7
April 2004



ASP 3.0 Tutorial Manual

<p> <b> paragraph 1 in bold font and size 8 </b>
</p>
</FONT>

<FONT SIZE = 5 >

<p> <i> paragraph 2 in italics font and size 5
</i> </p>

</FONT>

<FONT SIZE = 2 >

<p> <u> paragraph 3 underlined and size 2 </u>
</p>

</FONT>

After a long sentence you can simply add a break
to specify <br> where the next line should begin.

</BODY>
</HTML>

D. Tables

Tables are useful devices for presentation of information in a meaningful form. At the
same time, tables can be used to structure the layout of a Web page regardless of its
content. You can produce a variety of appearances simply by designing different table
structures into which your page information will fit. In short, tables are important
presentation devices, and you need to know as much as you can about how to use them
There are three basic steps to defining a simple table. First define the table itself
(appearance of table, cell spacing, backgrounds, etc.) then define a row of the table and
finally defining the columns for a table.

The rows, columns, and cell intersections of a table are defined with three basic tags.
<TABLE>...</TABLE> tags surround the entire table description; <TR>...</TR> (table
row) tags defined the rows of the table; and <TD>...</TD> (table data) tags define the
cells, or columns, that appear in each row.

1. Table Tag <Table>...</Table>

To define a Table, we will use two tags. The opening table tag <TABLE> and the
closing table tag </TABLE>.

<TABLE>...</TABLE>

ALIGN = "LEFT | CENTER | RIGHT"

HSPACE = "n"

VSPACE — "pm A number
BORDER = "n"

BORDERCOLOR = "color name | #rrggbb"
BORDERCOLORDARK = "color name | #rrggbb"
BORDERCOLORLIGHT = "color name | #rrggbb"

BGCOLOR = "color name | #rrggbb"

8 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

BACKGROUND = "URL"

CELLPADDING = "n"

CELLSPACING = "n"

WIDTH = "n | n%" <«— Percent or number
<table>

<TR>...</TR>

ALIGN = "LEFT | CENTER | RIGHT"
VALIGN = "TOP | MIDDLE | BOTTOM"
BGCOLOR = "color name | #rrggbb"

<TD>...</TD>
<TH>...</TH>

ALIGN = "LEFT | CENTER | RIGHT"
VALIGN = "TOP | MIDDLE | BOTTOM"
BGCOLOR = "color name | #rrggbb"
BACKGROUND = "URL"

COLSPAN = "n"

ROWSPAN = "n"

NOWRAP

<CAPTION>...</CAPTION>
ALIGN = "TOP | BOTTOM"

2. Row <TR>...</TR>

A table is made up of rows and columns. Before a column can be defined a row

must be defined. Rows will take their default attributes from what is defined in the
<table> tag, however these attributes may be overridden when defining a table row (i.e.
<tr> tag) - The following is an example of defining table row with a single row defined:

<table width="43%" height="70%" border="1" cellspacing="15"

cellpadding="8" >
<tr>

</tr>\

Row definition
</table>

The following attributes may be defined for a Table Row:
e Row Alignment
e Vertical Alignment
e Background Color

a. Row Alignment

The values for the Row Alignment are:
> Left
» Center
> Right

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

The following is an example of defining the Table Row for each of these values:

<tr align=left>
<tr align=center>
<tr align=right>

b. Vertical Alignment

The vertical alignment defines where the row is to line up vertically.
Typically you would probably want the row to line up at the top, however there may be
times which you want it to align vertically to create different effects. The following are
examples of vertical alignment:

<tr align=center valign=top>

<tr align=center valign=center>
<tr align=center valign=bottom>
<tr align=center valign=baseline>

c. Background Color

Finally, you can define the background color of the Row. This following is
an example of adding in the background color for the row to be displayed in Burgundy
Color and the Column in Green:

<HTML>
<BODY>

<table bgcolor="gray" width="43%" height="70%" border="10"
cellspacing="15" cellpadding="8" bordercolor="blue" ><tr

align=center valign=top bgcolor="yellow"><td
valign="middle" align="center" > <b> Row 1, Col 1 <b>
</td><td valign="middle" align="center"><b> Row 1, Col 2
<b> </td></tr>
<tr align=center valign=top bgcolor="yellow"><td
valign="middle" align="center" > <b> Row 2, Col 1 <b>
</td><td valign="middle" align="center" > <b> Row 2, Col
2 <b> </td></tr></table>

<BODY>
</HTML>

10 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

a D:aralamaclasses’ ASP Class Product Code'\ASP HTML Presentation'Code’LabsASP Labs'Lab 84new_pa - Microsoft Internet Explol == ﬂ
File  Edit Views Faworites  Tools  Help ﬁ
d=Eack - = - @ | ‘ @SEarch (] Favarites @Med\a Qs ‘ %v =] E - @

Address I@b:\aya\ama\classes\ASP Class Product CodelASP HTML Presentation| CodelLabsiASP Labs|Lab 8inew_page_1,htm H 6o | Links

=l
Rowl, Col 1 Rowl, Col 2
Row2, Col 1 Row2, Col 2
El
|@ Done l_l_ ’_ @ My Computer

Figure 4 Colors in an HTML Table

3. Column <TD>...</TD>

A Row is divided into Columns (or cells) - Each Cell has many attributes the
define what the appearance of that cell is. Each column (or cell) is define by the <td> and
</td> tags. Below we have placed these two tags between the table row tags (i.e. <tr>

and </tr> tags).

<HTML>
<BODY>
<table width="43%" height="70%" border="2"
cellspacing="3" cellpadding="2" >
<tr align=center valign=center >

<td> Row 1, Col 1 </td>
<td> Row 1, Col 2 </td> ‘\\\\\“\\\\\\

</tr>
<tr align=center valign=center >
<td> Row 2, Col 1 </td>
<td> Row 2, Col 2 </td>
</tr>
</table>

Column definition

MAGTF Staff Training Program
April 2004

11



ASP 3.0 Tutorial Manual

<BODY>
</HTML>
a D:ayalama',classes\III MEF ASP class documents' Table.html - Microsoft Internet Explorer provided by AT&T WorldNet Service == ﬂ
File Edit Wiew Favorites Tools Help ﬁ
d=Eack - = - Q) #at | Qzearch  [GFavorites  (DMeda (% | 5y S E N
Address I@ [\ayalamatclasses\III MEF ASP class documents)Table, hitml j @Go | Links
Fow 1, Coll Fow 1, Col2
Fow 2, Col 1 Fow 2, Col 2
E
|@ Done ,_’_,_ @.. Iy Computer

Figure S HTML Table (2 Rows, 2 Columns)

a. Column and Vertical Alignment
The same principle as the row applies to the column in terms of alignment.

<td valign="middle" align="center"> </td>
<td valign="middle" align="center"> </td>
<td valign="middle" align="center"> </td>

b. Background Color

Background color for a column is done in the same way as for the row.

Row color, either simple
<tf‘glign=center valign=top bgcolor="blue"> name or hex number.
<td valign="middle" align="center" bgcolor="#FFFFCC"></td>

<td valign="middle" align="center" bgcolor="#FFFFCC"></td>

<td valign="middle" align="center" bgcolor="#FFFFCC"></td>

</tr>

Column color

12 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

4. Heading <TH>...</TH>

Column headings can be supplied with <TH>...</TH> tags appearing within the
first row of the table. These tags center and bold the enclosed text over the associated
column. In the following example a background color is specified for the row of column
headings.

<table border="1">
<caption><b>This is My Table</b></caption>
<tr bgcolor="silver">

<th>Column 1</th>

<th>Column 2</th>

<th>Column 3</th>

</tr>
This is My Table
‘Column 1 ‘Column 2 ‘Column 3
| | |
| | |
| | |
Figure 6 HTML Table with Headers and Caption
E. Lists

HTML also contains tags to format bulleted and numbered lists.

Lists and the items within them are block-level elements, meaning that line spaces
will automatically be added before and after them. Extra space may be added
above and below the entire list element but, in general, if you want to add space
between individual list items, you need to insert a <p> tag between them
(although, technically, that is not good HTML form).

1. Unordered List
An unordered list is a series of items set off from surrounding text by a single
blank line and are preceded by bullet characters. The list is single spaced and indented
from the left margin. An example unordered list is shown below.
e Listltem1
e ListItem2
e ListItem 3

a. The <UL> Tag
An unordered list is created with <UL> tags wherein each item in the list
is identified by an <LI> (list item) tag. The general format for an unordered list is shown

below.
<UL>
TYPE = "DISC | CIRCLE | SQUARE"

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<LI>List item 1</LI>
<LI>List item 2</LI>

</UL>

Items in the listing are single spaced. You can code <BR> tags between the items to
increase the line spacing. List items containing text paragraphs are word wrapped and
indented inside the bullet character.

i. Type Attribute

The TYPE attribute can be coded within the opening <UL> tag in
order to specify a different type of bullet character. There are three types of attributes:
e circle (default)
e square
e disc

<ul type="circle">
e Listltem1
e ListItem2

<ul type="square">
= ListItem 1
=  ListItem?2

<ul type="disk">
o ListItem 1
o ListItem2

ii. Nesting Unordered Lists

Unordered lists can be nested within each other. For example, a
bulleted list appearing inside a bulleted list is produced by the following code,

<ul type="square">
<li>List ITtem 1</1i>
<li>List Item 2</1i>
<ul type="circle">
<li>List Item 2a</1li>
<li>List Item 2b</1i>
</ul>
</ul>

which is rendered in the browser as

= List Item 1

= List Item 2
oList Item 2a
oList Item 2b

14 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

2. Ordered List

An ordered list is a series of numbered items set off from surrounding text by a
single blank line. The list is single spaced and indented from the left margin. An example
ordered list is shown below.

1. ListItem 1

2. List Item 2

3. ListItem 3

b. The <OL> Tag

An ordered list is created with <OL> tags wherein each item in the list is
identified by an <LI> (list item) tag. The general format for an ordered list is shown
below.

<OL TYPE = "1 | A | a | I | i" >

<LI>List item 1</LI>
<LI>List item 2</LI>

</0L>

Items in the listing are single spaced. If you want additional spacing between items, you
can code <BR> tags between them. List items containing text paragraphs are word
wrapped and indented inside the numeral character.

i. Type Attribute

You can code the TYPE attribute within the opening <OL> tag in
order to specify one of five different numbering characters. The attribute value can be

"1" for Arabic numerals (the default)
"A" for upper-case letters

"a" for lower-case letters

"I" for upper-case Roman numeral
"i" for lower-case Roman numerals

For example, the tag <ol type="A"> produces the following list of alphabetically
ordered items:

A. List Item 1
B. List Item 2
C. ListItem 3

<ol type="1">
1. List Item 1
2. List Item 2

<ol type="A">

MAGTF Staff Training Program
April 2004

15



ASP 3.0 Tutorial Manual

A, List Item 1
B. List Item 2

<ol type="a">
a. List Item 1
b. List Item 2

<ol type="I">
I. List Item 1
II. List Item 2

<ol type="i">
i. List Item 1
i1i. List Item 2

ii. Nesting Ordered Lists

Ordered lists can be nested within each other, each list having its
own numbering scheme. In the following example the outer list is numbered with upper-
case Roman numerals and the inner list is numbered with lower-case Roman numerals.

<ol type="1I">
<li>List Item 1</1i>
<li>List Item 2</1i>
<ol type="i">
<li>List Item 2a</1li>
<li>List Item 2b</li>
</ol>
<li>List Item 3</1li>
</ol>

This code is rendered in the browser as

I. ListItem 1
II. List Item 2
1. List Item 2a
i1. List Item 2b
III. List Item 3

Note that when lists are contained within other lists that no blank lines surround the
interior list as they do when the list appears within the normal flow of text.

iii. Start Attribute

When using numerals in an ordered list, you have a choice of the
beginning number for the list. For example, to start an ordered listing with the number 5,
code the opening tag with the START="5" attribute and the items will be numbered in
sequence accordingly:

16 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

5. ListItem E
6. List Item F
7. List Item G
8. ListItem H
9. ListItem I

F. HTML Forms

HTML forms provide a way for users to interact with Web pages. A form is, basically, a
data capture device. It presents the user with one or more data input or selection controls,
or fields, through which the user submits information to a Web page. On the basis of this
submitted information, the page can react to the user. This response can vary depending
on the purpose of the form. The submitted data may be used:

e to direct visitors to a different page, much like what happens when clicking a link

e to present visitors with personalized pages containing information and links
pertinent to their interests or preferences

e to trigger a complex search process to locate information or services about which
the user is interested

e to generate automated email responses

Forms gather information from users by displaying special form fields that permit
the user to enter data or make selections. The varieties of standard controls that can
be coded on a Web form are shown below.

Tewt Box |
Fassword: I
Textarea:

(8

a1y o

. Coom
Fadio Button: Fadio Button

Checkhios: Checkthis

Selection henu: I henu tem1 = |
Suhtrat Button: Subrrit Query

Reszet Button: Feset
Figure 7 HTML Form Controls

An HTML form can appear anywhere within the body of a Web page. In fact, the entire
page can be a form or you can define more than one form per page. The manner in which
you do this is dependent upon the purposes of the forms.

MAGTF Staff Training Program
April 2004

17



ASP 3.0 Tutorial Manual

1. The <FORM> Tag

Irrespective of the number of forms or their locations on the page, each must be
surrounded by a <FORM> tag, the general format for which is shown below.

<FORM>
NAME = "form name"
ACTION = "URL"
METHOD = "GET | POST"
</FORM>

All fields that are part of a form must be enclosed within <FORM> tags. These tags can
appear anywhere on the page as long as they enclose all the form fields. If a page
contains a single form, you can code the opening tag immediately following the <BODY>
tag and the closing tag immediately preceding the </BODY> tag to encompass the entire
page as a form. Then, form fields can appear anywhere on the page and be part of the
form. If a page contains more than one form, then <FORM> tags need to enclose only
those fields comprising each form.

a. NAME attribute

The NAME attribute assigns a name to the form. Naming a form is
necessary if you need to refer to the form in browser-based scripts. This is required, for
example, if your page includes scripts written in the VBScript language to process form
information or to edit or verify user-entered information prior to submitting it to the
server for processing. You can use any name of your choosing for a form; it is best if the
name does not include embedded blank spaces.

b. ACTION attribute

User information enter into a form is made available to a page containing
a script to processes that information in some fashion. Form information can be submitted
to the page containing the form, or it can be sent to a different page, depending on where
the processing script is coded.
The ACTION attribute identifies the page to which form information is submitted. If the
page is in the same directory as the form page, then the URL can simply be the name of
the page; if the page is at a remote location, a complete URL is coded. If the ACTION
attribute is not coded in the <FORM> tag, the information is made available to the current
page when it is reloaded following form submission.

c. METHOD attribute

The METHOD attribute specifies the manner in which form information
will be submitted. The two possible values are GET and POST. The POST is the default.
When the GET method is used, information from the form is submitted appended to the
ACTION URL; when the POST method is used, the information is transmitted as a
separate data stream. We'll take a look at these methods in more detail later.

18 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

All that is required at present is to code the basic <FORM> tag to enclose its fields.
Within these tags you can also include any other types of tags to structure and format

your page.
<html>
<head>
<title>A Form Page</title>
</head>
<body>

<form name="MyForm" action="AspPage.asp"
method="POST">

</form>
</body>
</html>

2. <INPUT TYPE = “TEXT”> Tag

The most commonly encountered type of form field is the text box. This control
presents a standard text entry box into which information can be typed. A text field is
created using the <INPUT> tag in the following format.

<INPUT>

TYPE = "TEXT | PASSWORD"

NAME = "field name"

SIZE = "n". Determines the textbox in characters.

Default is 20 characters.

MAXLENGTH = "n". Determines the maximum number of
characters that the field will
accept.

VALUE = "text string". Will display its contents

as the default value.

a. Type attribute

The <INPUT> tag includes the TYPE="TEXT" attribute to define this as a
text entry field. If no type attribute is specified, the default field type is TEXT, although
you probably will want to include this attribute to help document your code. Also, you
will likely need to include a label accompanying the field to prompt users about the type
of information being solicited.

<form>
Last Name: <input type="text">

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

</form>

Last Name: I /

A text box

b. NAME attribute

You will nearly always need to name your text fields, as you will any
other form field. As mentioned above, field naming is important because it provides
identification for the field, which, in turn, identifies the text value entered into the field
by the user. Any browser or server scripts written to process this information does so
through these field names.

The name of the field can be of your choosing. It should, however, be representative of
the field contents. In any case, you should not use names with embedded blank spaces.
Although this practice is syntactically correct so long as the name is enclosed in quotation
marks, it can cause problems in referencing the names in processing scripts.

<form>
Last Name: <input type="text" name="LastName">
</form>

The name of the text box is LastName. The
Request object will be able to access the
information through this name.

c. SIZE attribute

Unless you specify a SIZE attribute for a text field, it is displayed at its
default size, which is large enough for approximately 20 typed characters. In most cases
you will want to specify a size that is suggestive of the number of characters expected to
be entered. For example, the three text fields below are sized at 15 (City), 2 (State), and 5
(Zip code) characters, respectively. Note also that the labels and fields appears within a
table structure to help align them.

<tr>

<td>City: </td>

<td><input type="text" name="City" size="15"></td>
<tr>
<tr>

<td>State: </td>

<td><input type="text" name="State" size="2"></td>
<tr>

<td>Zip: </td>

<td><input type="text" name="Zip" size="5"></td>
</tr>

City: I

20 MAGTF Staff Training Program
April 2004




ASP 3.0 Tutorial Manual

State: I
Zip: I

3. <INPUT TYPE = “PASSWORD”> Tag

An input field that is similar in function to a text field is the password field. All
the attributes associated with the text field are applicable to the password type. When
coding TYPE="PASSWORD" a text box is displayed; however, instead of the typed
characters being echoed in the box, a line of asterisks (*), or bullets, are echoed. This
practice is valuable to keep passwords private to the persons entering them. Password
field specifications should include the NAME, SIZE, and MAXLENGTH attributes, just
like a text field.

<form>
Password: <input type="password" name="Password">
</form>

Fkkkkk

Password:

4. Drop Down Lists

a. The <SELECT> Tag

A drop-down list, or selection menu presents items that are chosen from a
drop-down list. By clicking on the down-arrow to the right of the menu the list is
exposed. Then one or more items can be chosen by clicking the entry.

The menu of choices is created with the <SELECT> tag. Inside this tag are <OPTION>
tags representing the items in the menu. The general formats for the <SELECT> and
<OPTION> tags are shown below.

<SELECT>
NAME = "field name"
SIZE = "n" This sets the number of visible

choices
MULTIPLE: The presence of this attribute
signifies that the user can make
multiple selections. By default only
one selection is allowed

<OPTION> Label
VALUE = "text string"
SELECTED

</OPTION>

</SELECT>

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

i. NAME attribute

As with all form elements, the selection menu must be assigned a
name with the NAME attribute. The menu name becomes associated with the value of the
item or items selected.

. SIZE attribute

The SIZE attribute indicates the number of items that are visible
at a time in the menu. By default, the menu displays the first item in the list when the
form is loaded. If a size is specified, the menu displays that number of items and, if
necessary, a scroll bar for accessing them.

iii. MULTIPLE attribute

One or more items can be chosen from the menu. The default is
one; however, with the MULTIPLE attribute, more than one item can be chosen. Multiple
items are chosen using the Shift-Click or Ctrl-Click method.

The <SELECT> tag for the following menu has a SIZE attribute of 4 to display four
items at a time and the MULTIPLE attribute to permit multiple choices. If multiple items
are chosen, the name of this field is associated with that collection of values, and any
scripts that process the field need to take this into account.

<form>
Choose your favorite color:<br>
<select name="Color" size="4" multiple>
<OPTION> Red </OPTION>
<OPTION> Green </OPTION>
<OPTION> Blue </OPTION>
<OPTION> Yellow </OPTION>
<OPTION> White </OPTION>
</select>
</form>
Choose your favorite color:

Red
Green
Blue

Yellow L“

b. The <OPTION> Tag

An item is defined for a selection menu with an <OPTION> tag. There are
as many tags as there are items in the menu. The label for the option is entered following
the tag. This is the text string that is visible in the menu and becomes the default value for
the selection.

1. VALUE attribute

22 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

The value associated with a menu option normally is given by
the text label following the <OPTION> tag. However, the VALUE attribute can be coded
to supply a different value from the label. You might choose to do this, for example,
when the labels are extended text strings but you need only to collect abbreviated codes
for the values.

<form>
How do you like to travel?<br>
<select name="Mode">
<option value="1">Airplane</option>
<option value="2">Car</option>
<option value="3">Bus</option>
<option value="4">Ship</option>
</select>
</form Notice the size attribute here is not
stated. Default is size one, providing

Howr do you like to travel? you a classical drop-down list.

IAirpIane 'I

5. The <INPUT TYPE = “SUBMIT”> Tag

All forms must include at least one "submit" button to submit the form
information for processing. This button is defined with an <INPUT TYPE = "SUBMIT">
tag and can appear anywhere on the form. The default appearance of the button with its
"Submit Query" label is shown below.

Submit Query |

The general format for the </INPUT> tag to define a submit button is given below.

<INPUT TYPE="SUBMIT">
NAME = "field name"
VALUE = "text string"

a. TYPE attribute

The attribute type must be SUBMIT. This value specifies that the control is
a form submission button and differentiates it from other <INPUT> controls.

b. NAME attribute

Submit buttons need to be named. This NAME attribute is associated with
the value of the button, and together these become part of the names and values that are
submitted with the form.

c. VALUE attribute

The VALUE attribute provides two types of identification for the button.
On the one hand, the value is associated with the name; on the other, this value is used as

MAGTF Staff Training Program 23
April 2004



ASP 3.0 Tutorial Manual

the label for the button. If a VALUE attribute is not assigned, the button is labeled
"Submit Query," but you can assign any text string you wish to provide helpful
identification for the user.

<form>

<input type="submit" name="SubmitButton"
value="Submit">

</form>
6. The <INPUT TYPE="IMAGE”> Tag
An alternative to use of the standard submit button is to use a graphic image to

trigger form submission. For example, the following "Go" button functions identically to
a submit button.

<form>

<input type="image" src="gobutton.gif" border="0"
name="SubmitButton"
alt="Click to Submit">

</form>

The <INPUT> tag uses TYPE="IMAGE” to identify this as a graphic form submission
control. The particular image that is used is given by the URL in the SRC attribute. Other
attributes of the </MG> tag can be coded, including BORDER="0" to remove the blue
border from around the image and the ALT attribute for an alternative text description of
the image. As with standard submit buttons you will need to assign the image button a
name with the NAME attribute.

7. The <INPUT TYPE="RESET”> Tag

A reset button can be defined to permit users to clear all information from a form.
Its default appearance is shown below.

Reset

This button is created by coding an <INPUT TYPE="RESET"> tag. You can name the
button and can replace the default "Reset" label by coding the VALUE attribute. The

24 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

action of the button is to automatically reset the form, clearing all text input areas and
resetting radio buttons, checkboxes, and selection menus back to their defaults.

<form>
<input type="reset" value="Clear the Form">

</form>

MAGTF Staff Training Program
April 2004

25



ASP 3.0 Tutorial Manual

Il. Getting Started

A. What do we need to create a web site?

Before you can write ASP code, you have to have a place to run it. ASP file do not run in
your browser like HTML files do. ASP code is evaluated on the server before you ever
see it in your Web browser. You need to have Internet Information Server (IIS) installed
in your computer. IIS version 5.0 comes with Windows 2000.

To create a ASP file you could use Microsoft Front Page, Microsoft InterDev, or even
Notepad (if you are really brave!).

B. Setting up the environment

1. 1IS 5.0 overview
IIS is not installed with Windows 2000 Professional if you accepted the default
settings during the installation process. If you change the installation settings, you can

add the Web services as you install Windows 2000 professional. You can also add IIS
once you have got Windows installed.

a. Installation

If you are installing IIS after completing the Windows installation, go to
Control Panel = Add/Remove Programs, and pick the Add/Remove Windows
Components button. You should have a dialog window like figure 7.

Windows Components Wizard

Windows Components
You can add ar remove components of Windows 2000,

To add or remove a component, click the checkbos. A shaded box means that only
part of the component will be installed. To zee what's included in a compaonent, click

Details.

Components:

(&7 Indexing Service j
|:| Ez] tanagement and Monitoring Toolz 09 mME

[] = Message Queuing Services 2EMB

1 2= Natwnrkinn Services niwe T

Description: 115 zervices fw'eb and FTP support] along with support for FrontPage,
tranzactions, A5Ps, database conhections, and receiving of posts.

Total digk space required: 0.0MB Details |
Space available on disk: 3320 MB
< Back I Mext » I Cancel |

Figure 8 Windows Components Add/Remove dialog window

26 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

There are a number of components in the IIS that you can choose to add or leave out. Go
ahead and leave the default options. If you decide to install certain components only,
stick with this minimum set of features:

e Common Files

e Personal Web Manager

e World Wide Web Server
Now that we have installed IIS, there is a new icon under the Control Panel =
Administrative Tools folder = Internet Services Manager. When you start Internet
Services Manager, you will see the window shown in Figure 8.

¥E Internet Information Services =101 x|
| adion vew ||+ » |@m(m|B (2|8 » = 0| |
Tree I Cormputer | Local | Connection Type | Status |
% Internet Information Services B ayalama fes TCRIP

EI--- * avalama
-8 Default FTP Site
=g Defaul Web Sie

- Scripks

- II5Admin

B 1I55amples
- M3IADC

B 1I5Help

- webpub

_wi_hin
iii mef

B Printers

B Assessment
+]- 448 MaxwebPortal
- ASP class docs

&[] images

-0 _private

-0 _vti_onf

F-0 _vti_log

-2 _vti_pvt

D _whi_scripk

B0 i bt

-4 Defaule SMTP Wirtual Server

[#]

Figure 9 Internet Information Manager window

You will see the name of your computer on the left at the top of the screen. Under the
name of your computer (it behaves like a directory) you will see the sites configured on

your server.
The Default Web Site is:

http://machinename/
For example from Figure 8: http://ayalama/

C. Creating virtual directories

A virtual directory is a pointer to a real or physical directory. It is nothing more than a
shorthand name for a real directory. When a user requests a URL, the server looks up the

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

virtual directory name and translates it to a physical directory before accessing the file.
One positive thing about creating virtual directories (besides avoiding a lot of writing in
the URL) is that virtual directories hides the physical implementation of your site from
the users, giving (in some way) an extra layer of security.
When you installed your Web server, a default Web site and a set of directories were
created. By default they are located in C: /InetPub. The default Web directory is
wwwroot in that directory. Any directory that you create in the root Web directory are
available through the Web browser. However, you may want to create another directory
that is not in the same directory as everything else. That is when a virtual directory
comes into place.
There are to ways to create a virtual directory, using the IIS Manager (virtual directory
creation wizard) or without the wizard.
To create a virtual directory, basically you follow three steps:

e Creation of an alias

e Assign a physical directory to the alias

e Assign access permissions

1. Creating Virtual Directories With the Wizard

To create a virtual directory from the IIS Manager, right-click the Default Web

Site and select New = Virtual Directory from the popup menu. You should have a
window as shown in Figure 10.

v Internet Informatlon 5 _ gl =l

Action  Wisw |JC=-D|-|_|'.||§|&|’III |

Tree I | ame | Path | Status =
(=Y

[T
% Internet Information Sers
; Yirtual Directo X
EI-" * ayalama x|
-4l Default FTP Site Welcome to the Virtual

-y Default Web Sit . . .
g " Directory Creation Wizard

Thiz wizard will help you create a new virtual dirsctary on
this weh site.

Click Mext to continue.

< Back Mext > Cancel

Jd UL L e g

@ mmc. gif

3| nanerrar.aif i
[l | »

[ [ [
Figure 10 Creating Virtual Directories with the Wizard

28 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Figure 11 shows the next step in the creation of a virtual directory using the wizard. In
this window you specify the name or alias that you want to use in your Web browser.
This is the name that you will type in the URL section of the browser in order to access

the desired page.

¥z Internet Information Services i ] 4
| acton Yow || & = | OE| FOE @S > 80 |
Tree | | riame | Path | status -
C—— o (=T it i
% TUErNEL "I OrMALIDN 36 e Directory Creation Wizard x|
E|--- * ayalama
@ Default FTP Site  Wirtual Directory Alias .
Q Default Web Site ‘You must give the wirtual directary a short name, or alias, for quick reference.
[ DeFault SMTP virt
Tupe the aliaz you want to uze to gain access to this Web virtual directom. Use the
zame naming conventions that you waould for naming a directan.
Aliaz:
< Back MHext > Cancel
i L= | = 1 )

@ . gif
@ nanarror. aif bl
] | »

Figure 11 Naming your virtual directory using the wizard

The next step is to specify the physical directory that the alias or virtual directory will be
pointed at. Figure 12 shows the appropriate window for that.

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

¥z Internet Information Services =1alx]
| aton ven || & = | BW|EFRE (@2 0| |
Tree I MB I Path I Status -
% Internet Infarmation Sery pm " — " ——m—

I x

4 * ayalama

2 Default FTP Site
8 Defaul web Sike
i Default SMTP Vit

weh Site Content Directory
Wwhere is the content you want to publish on the \Wweb site?

9

Enter the path to the directory that containg the content.

Directary:

Browse... |

< Back [eqt

Cancel

[F] OCastart. J50

@ e, gif

51 nanerrnr. it
4

Figure 12 Specifying the directory for the alias

Finally, you specify the security settings or properties for the virtual directory as shown

in Figure 13.

?'5 Internet Information Services

=10 x|

J&ction Yiew |J¢' #|||@|Jg| b u "|

Tree I | Path

| Skatus

[T TR g

% Inkernet Infarmation Sery ¥irtual Directory Creation Wizard
B

J * avalama

) Default FTP Site
8 Default Web Site
[+ Default SMTP Yirk

Access Permissions
‘What access permissions do vou want to set far this virtual directary?

x|

s

Allow the following:

¥ Fead

V¥ Run sciipts [such as A5P)

™ Execute [such as ISAP| applications or CGI)
[~ wiiite

[ Browss

Click Mext to complete the wizard.

< Back Mext »

Cancel

Jhd UL L2 e )

@ i, gif

@] nanerrar.nif

Figure 13 Setting Access Permission

30 MAGTF Staff Training Program

April 2004




ASP 3.0 Tutorial Manual

2. Creating Virtual Directories Without the Wizard

You can create virtual directories without using the wizard. The three steps still
apply. Using Windows Explorer or My Computer in the Desktop, navigate where the
desire directory is located. Right-click the desire directory and select Properties. You
will have a window like Figure 14.

III_MEF_ASP_CLASS Propetties 7] x|

General |'W'e|:| Sharingl Sharingl Securit_l,ll

B

IIII_MEF_.-’-‘-.S P_CLASS

Type:
Location:

Size:

Size on digk:

Containz:

File Faolder
[r:hayalamatclazzes
380 KB [383.171 bytes)
444 KB [454 556 bytes)
31 Filez, & Folders

Created:

Friday, May 09, 2003, 2:35:08 P

Attributes:

¥ Fead-only &dvanced... |

[ Hidden

(] I Cancel Spply

Figure 14 Creating a virtual directory without the wizard

Select Web Sharing tab. The window will look like Figure 14 but with the Do not share
this folder radio button selected. Go ahead and select the Share this folder option. The
Edit Alias window will pop-up as shown in Figure 15. In this window you will create the
alias and assign Permission Access parameters.

MAGTF Staff Training Program 31
April 2004



ASP 3.0 Tutorial Manual

BX III_MEF_ASP_CLASS —|=] x|

File Edit ‘View Favorites Tools  Help ﬁ

4=Back - = - ‘ Qisearch |%Fo\ders Ql%‘ o @|'

Address |21 ci\m_MEF ase cLass

j @GD
- =
7 o ¢

-] adabe General ‘Web Sharing ISharingl Securityl it G

1 My eBooks images includes trash UsersDB Add_User  Add_User_...
i ASS

(2 my Fictures @ Internet Information Services are started. [

- My wehs

E-4ED My Computer pion.
24 3% Floppy ¢

fe;
fe)

i X change_Info change_info.., check_pass.,, Database_C... Delete Delete_User
S || # ettt CITEN 1
-] Docume [ & Share this folder -
0 FormFlo | Aliases Direotoyy:  [C-UI_MEF_ASP_CLASS
- I_MEF dd -
B-_1 Inetpub Alias lii_m = results
=1 Iy Inste
-1 PES Edit Froperties... [~ Access permission:
-1 Program TS ¥ Read I Script source access
B £
[]__g ;RDNT ™ Wiite: ™ Ditectory browsing
=2 New Yolume - .
B r~ Application permission:
-0 ayalamz B =
B ase  None
D asp 1+ Scripts
00 das ® Erme ks s
&

g ok Cancel Apply el
-] [T MeF_ASP_CLASS
1 images
7 includes
(1 trash
H D UsersDB
B MaswebPortal
-1 e-baoks
B0 Fitreps
-1 Service Packs
-1 Dowrloaded
-5 MAST_ASP (E2)

=1

|20 objectis) (Disk free space: 321 MB) ‘52.7 KB |@ My Computer

Figure 15 Naming the Alias and assigning Access permissions without the wizard

By default, you have read and script permissions, which enable you to see HTML, image,
and ASP files. You have to have both permissions checked. If you do not mark the
script permission box, ASP files will not be able to run. If you do not mark the read
permission box, you will not b able to view the pages.

32 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

lll. ASP Overview

A. What are Active Server Pages?

ASP is design to let you create pages that can change each time a user loads them. You
write code in the page that is run on the Web server before the user sees the page. It is an
open, compile-free application environment in which you can combine HTML, scripts,
and reusable ActiveX server components to create dynamic and powerful Web-based
applications. ASP enables server side scripting for IIS with native support for both
VBScript and JScript.

1. Composition of Active Server Pages?

Active Server Pages are text based files comprised of a combination of HTML
tags and Active Server scripts. The Active Server scripts, whether written in VBScript or
JScript, are interpreted by the Active Server engine residing in the server. The Active
Server scripts usually contain variables, operators, and statements to control the
application logic processed by the server.

a. ASP Delimiters

Active Server scripts are distinguished on the page from HTML tags by
using <% and %> delimiters. The delimiter can be embedded within HTML tags.

b. Setting the ASP Scripting Language

There are two different ways to set the scripting language. The first one is
to rely on the default scripting language of the IIS, VBScript (not a good practice). The
LANGUAGE attribute allows you to specify the scripting language for the server to
interpret, and therefore the interpreter.

<%@ LANGUAGE = “WBScript” %>

If JScript was the desired scripting language, use JScript with the LANGUAGE tag,
<%@ LANGUAGE = “JScript” %>

c. Variables, Operators, and Statements
Each scripting language has its own specific syntax that is used to define

and set variables, use operators for comparing items, and use statements to help define
and organize the code.

d. Active Server Components and Objects
The scripting variables, operators, and statements can be used to tap into
special Active Server tools that add programming functionality to the ActiveX Server.
These tools consist of Active Server Objects components. There are six individual
objects with different roles and responsibilities. The most commonly used are:
e Request: responsible for retrieving information from the browser
e Response: responsible for sending information to the browser

MAGTF Staff Training Program 33
April 2004



ASP 3.0 Tutorial Manual

e Session: responsible for managing information for a specific user session
e Server: responsible for administrative functionality of the server

=SCRIPT Language="vBScript” RUNAT="Sarver"> VBScript which runs on the server
Subroutine #——— a5 a subroutine called from another
. sCTipt.
=/SCRIPT=
::E':"a: HTML that is interpreted by the client
@—— when the page is retumed from the
<TITLE=Web Page=</TITLE= —— nage
=/HEAD=
=5CRIPT Language="JavaScript"> JavaSeript (n-ine routine that rins
- 8 on the client as the page is loaded.
=/SCRIPT=
<BODY=
=0
In-lne processing commands WBscript which runs on the server
®——— with embedded SOL call to
database server.
=TABLE=
<TR=
=TO==%=fald¥%=<TD= > HTML for client display of embedded
<TD==%=fiald%><TD=> data values from the server
=TR=
=TABLE>
Server-side Include to copy external
=!— INCLUDE File="file.inc" —= ®————  HTMLfile into page before returning to
client.
=/BODY=
=/HTML=
=SCRIPT Language="JavaScript"=
function { JavaScript function that is called
®——— by the client after page s formatted
1 by the browser,
=/SCRIPT=

Figure 16 ASP Composition

2. Running ASP Scripts

Web pages containing scripts must be saved with the special file extension .asp to
inform the server that this is a scripted page. When the ASP page is retrieved by the
server, it is not sent directly to the browser as is the case with normal .htm pages. Instead,
the page is routed to the ASP processing routine (asp.dll) where the scripts on the page
are run and the information produced by the scripts is generated.

34 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Webh Server

page asp
CHThAL*

%
‘whi Scripting
L E

“HThL>

Wieb Browser %‘
¥ Soipting Component )
j File

Database

Figure 17 Running ASP Scripts

The server "composes" an HTML page for return to the user, inserting the information
generated by the scripts within the HTML formatting. The end result is a page composed
entirely of HTML and text information where much, if not all, of the text information has
been generated by the scripts. If you view the source listing of the returned page in the
browser, you see only the final results of processing. You do not see any of the scripts
contained on the original page.

Scripted pages (.asp pages) must be run under the http protocol. This means that you
cannot open these pages as files in your browser and view the results as you can with
standard .htm pages. Pages must be run from a server and accessed with a URL
beginning with http://servername/.. .asp

MAGTF Staff Training Program 35
April 2004



ASP 3.0 Tutorial Manual

36 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

IV. Lab 1: Your First Code
A. Hello World!

1. Creating an HTML Page
In your text editor (Notepad, Wordpad, MS Word) enter the following code:

<html>
<head>

<title> My First HTML Page Hello World! </title>
</head>

<body>
<hl> Hello, World! </hl>
</body>

</html>

Save the file to the root directory of your Web. Once saved, go to your Web browser,
type the following URL, substituting the appropriate names with the one you have
selected:

http://servername/filename.html

R P Tirst 1ML Page Hello Wold) - Microsolt Entermet Daplorer provided by AT T Workivet Service alelx
Fio Gl wew Forkes fok Heb =
- - - D [E) A | Dsewch [Lfavores Frads 3 | - S - (=] @

s [ ool clasees\ LIl MEF ASP chss doourverksifello otk el Il oo s ™

Hello, World!

& Done 2 My Computer

Figure 18 Hello World! Web page

MAGTF Staff Training Program 37
April 2004



ASP 3.0 Tutorial Manual

And here you have it, your first HTML page.

2. Creating your First ASP page

Lets take the page created above and add some script to it. We want to display
the current time in the server and based on the time to say Good morning, afternoon or
Good evening, in other words to make a decision. So using the same steps as above, we
will proceed to make the additions.

<html>
<head>

<title> My First ASP Page Hello World! </title>
</head>

<body>
<hl> Hello, World! </hl>
<% If Time >= #12:00:00 AM# AND Time < #12:00:00
PM# Then %>
<h2> Good Morning! </h2><p>
The time on the server is: <% =Time () %>
<% Elseif Time >= #12:00:00 PM# AND Time <
#6:00:00 PM# Then %>
<h2> Good Afternoon! </h2><p>
The time on the server is: <% =Time () %>
<% Else %>
<h2> Good Evening! </h2><p>
The time on the server is: <% =Time () %>
<% End 1f %>
</body>

</html>
Save the file to the root directory of your Web server. Once saved, go to your Web
browser, type the following URL, substituting the appropriate names with the one you

have selected:

http://servername/filename.asp

38 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Tty First ASP Page Hello Workd - Microsolt Internet aplorer provided by ATAT Workiet Service

Pl Dl Vew Faeocter Tosk el

alzlx
|
dpeck + = - () [3) o | Dysearch [Fevortss Greda (3 e O o] @
Adcress [ @ Tt i img oo b ik ek T Tl @e0 ks ™
Hello, World!

Good Afternoon!

The tune on the seaver . 32745 FM

2] Dene.

| [ Local ntranst

Figure 19 Hello World! ASP page

Your very first ASP page.

MAGTF Staff Training Program 39
April 2004



ASP 3.0 Tutorial Manual

40 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

V. Programming and Scripting in VBScript

A. Differences between Visual Basic and Visual Basic Script

VBScript was designed as a subset of the Visual Basic language. VBScript is much easier
to learn than programming languages such as Java, C/C++, and other scripting languages
such as JavaScript. Derived from the BASIC language, VBScript should not be difficult
for anyone who has any computer programming experience.

One of the first striking differences between VBScript and Visual Basic is that Visual
Basic has a design-time environment. When you run Visual Basic, you get an attractive
editing environment where you can craft forms and write code using an interactive shell.
When you work with VBScript, on the other hand, you have no such environment.
VBScript code "lives" within an HTML document, which is a plain text file. Visual Basic
code creates Windows applications that operate in and of themselves. On the other hand,
VBScript code works inside of HTML documents and runs along with HTML.

The other primary difference between VBScript and Visual Basic, aside from
development environments, is the language itself. Visual Basic supports many
commands, keywords, and data types that VBScript does not support.

B. Variables and Data Types

1. Data types

VBScript has only one data type called a Variant. A Variant is a special kind of
data type that can contain different kinds of information, depending on how it is used.
Because Variant is the only data type in VBScript, it is also the data type returned by all
functions in VBScript.

A Variant can contain either numeric or string information. A Variant behaves as
a number when you use it in a numeric context and as a string when you use it in a string
context. That is, if you are working with data that looks like numbers, VBScript assumes
that it is numbers and does what is most appropriate for numbers. Similarly, if you're
working with data that can only be string data, VBScript treats it as string data.

Below is a list with all the subtypes of data that a Variant can contain:

Empty Variant is uninitialized. Value is 0 for numeric variables or a zero-length
string ("") for string variables.

Null Variant intentionally contains no valid data.
Boolean Contains either True or False.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range -32,768 to 32,767.

Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

MAGTF Staff Training Program 41
April 2004


http://msdn.microsoft.com/library/en-us/script56/html/vskeytrue.asp
http://msdn.microsoft.com/library/en-us/script56/html/vskeyfalse.asp

ASP 3.0 Tutorial Manual

Long Contains integer in the range -2,147,483,648 to 2,147,483,647.

Single Contains a single-precision, floating-point number in the range
-3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the range
-1.79769313486232E308 to -4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to 1.79769313486232E308 for positive
values.

Date (Time) Contains a number that represents a date between January 1, 100 to
December 31, 9999.

String Contains a variable-length string that can be up to approximately 2 billion
characters in length.

Object Contains an object.

Error

2. Variables

A variable is a placeholder that refers to a computer memory location where you
can store program information that may change during the time your script is running. In
VBScript, variables are always of one fundamental data type, Variant.

a. Declaring Variables

After you've decided on a name for your variable, you have two ways to
create it. The first way, called the explicit method, is where you use the Dim keyword to
tell VBScript you are about to create a variable. You then follow this keyword with the
name of the variable. For example, if you want to create a variable called Quantity, you
would enter :

Dim Quantity

and the variable is created. If you want to create more than one variable, you can put
several on the same line and separate them by commas,

Dim X, Y, Z

The second way to create a variable is called the implicit method. In this case, you don't
need to use the Dim statement. You can just start using the variable in your code, and
VBScript creates it automatically. If, for example, you want to store the quantity of an
item,

42 MAGTF Staff Training Program
April 2004


http://msdn.microsoft.com/library/en-us/script56/html/vbsdatatype.asp

ASP 3.0 Tutorial Manual

Quantity = 10

Using the implicit method you don't have to create the variable explicitly with a Dim
statement.

If you take no special steps, you can freely intermix the implicit and explicit methods of
declaring variables. When you want to, you can choose to set aside a named storage
space before you use it by giving it a name in advance through the Dim statement. On the
other hand, you can also rely on the fact that when you refer to something by name in a
statement and space hasn't yet been reserved for storing that variable, it will be created
for you on-the-fly.

A word of caution!! This method of intermixing implicit and explicit declarations can
produce programs that are confusing to follow. Fortunately, VBScript gives you a way to
force a consistent explicit declaration approach. To make the explicit method a
requirement and prevent the implicit allocation of names, you must place the command

Option Explicit
in the first line of the first script in your HTML document.
<%

Option Explicit
Dim Quantity

oo

>

Why use the explicit method when I can just start using variables? The implicit method
is certainly more convenient while you are writing the code-that is, until you spell a
variable wrong. What will happen? VBScript will go ahead and create another variable
based on your misspelling, and you will get the wrong result. Consider, for example:

o\

<

Quantity = 2
Quantity = Quantity + 3

oo

>

You would expect the result to be 5, right? And it would be. Suppose you misspelled
Quantity in the second line of code:

<

o\°

Quantity = 2
Quantity Quantite + 3

oo

>

MAGTF Staff Training Program 43
April 2004



ASP 3.0 Tutorial Manual

The variable Quantite would be created on the spot, and because it was never defined or
previously assigned a value, it would be assigned a value of zero. The result variable
Quantity, then, would wind up being 3, not 5. If, on the other hand, you were using the
explicit method of creating variables, you would enter the code as

<

o\°

Option Explicit
Quantity = 2
Quantity Quantity + 3

o

>

which would give you a runtime error if you spelled Quantity wrong because you had not
declared it first.

b. Naming Restrictions

Variable names follow the standard rules for naming anything in
VBScript. A variable name:

e Must begin with an alphabetic character.

e Cannot contain an embedded period.

e Must not exceed 255 characters.

e Must be unique in the scope in which it is declared.

c. Constants

A constant is a meaningful name that takes the place of a number or
string and never changes. A number of useful constants you can use in your code are built
into VBScript. You create user-defined constants in VBScript using the Const statement.
You can create string or numeric constants with meaningful names and assign them
literal values. For example:

Const MY STRING = “VBScript is fun”
Const MY AGE = 31

You may want to adopt a naming scheme to differentiate constants from variables. This
will prevent you from trying to reassign constant values while your script is running. For
example, you might name your constants in all capital letters. It is a good practice to do
that. Differentiating constants from variables eliminates confusion as you develop more
complex scripts.

C. Control Structures

You can control the flow of your script with conditional statements. Using conditional
statements, you can write VBScript code that makes decisions.

44 MAGTF Staff Training Program
April 2004


http://msdn.microsoft.com/library/en-us/script56/html/vsstmconst.asp

ASP 3.0 Tutorial Manual

1. If...Then...Else

Conditionally executes a group of statements, depending on the value of an
expression.

If condition Then statements

Or, you can use the block form syntax:

If condition Then
statements

Elself condition-n Then
else 1f statements

Else
else statements

End If

The If...Then...Else statement is used to evaluate whether a condition is 7rue or False
and, depending on the result, to specify one or more statements to run. Usually the
condition is an expression that uses a comparison operator to compare one value or
variable with another. If... Then... Else statements can be nested to as many levels as you
need.

To run only one statement when a condition is 7rue, use the single-line syntax for the
If...Then...Else statement. The following example shows the single-line syntax. Notice

that this example omits the Else keyword. MyDate is assigned 13 Feb
. 1995. Today’s date is 21 May
Dim myDate 2003. Since MyDate is less

MybDate = #2/13/954 than today’s date, MyDate will
If myDate < Date () Then myDate = Date() be assigned 21 May 2003

To run more than one line of code, you must use the multiple-line (or block) syntax. This
syntax includes the End If statement.

Sub Status (value)
If value = “L” Then
MarineStatus = “On Leave”
End If
End Sub

A variation on the If... Then...Else statement allows you to choose from several
alternatives. Adding Elself clauses expands the functionality of the If... Then...Else
statement so you can control program flow based on different possibilities.

Dim Status
Status = “1T”
If Status = “T” Then
MarineStatus = “TAD”
Elself Status = “L” Then

MAGTF Staff Training Program 45
April 2004



ASP 3.0 Tutorial Manual

MarineStatus = “On Leave”
ElseIf Status = “A” then

MarineStatus = “Accounted for”
Else

MarineStatus = “UA”
End If

You can add as many Elself clauses as you need to provide alternative choices. Extensive
use of the Elself clauses often becomes cumbersome. A better way to choose between
several alternatives is the Select Case statement.

2. Select Case

The Select Case structure provides an alternative to If... Then... Elself for
selectively executing one block of statements from among multiple blocks of statements.
A Select Case statement provides capability similar to the If... Then...Else statement, but it
makes code more efficient and readable.

A Select Case structure works with a single test expression that is evaluated once, at the
top of the structure. The result of the expression is then compared with the values for
each Case in the structure. If there is a match, the block of statements associated with that
Case is executed, as in the following example.

Dim Status, MarineStatus
Select Case Status
Case "A"

MarineStatus
Case "L"
MarineStatus
Case "T"
MarineStatus
Case Else
MarineStatus
End Select

D. Looping Structure

= “Accounted for”

= “On Leave”

—_ AN TADII

p— A\ UA ”

Looping allows you to run a group of statements repeatedly. Some loops repeat
statements until a condition is False; others repeat statements until a condition is True.
There are also loops that repeat statements a specific number of times.
The following looping statements are available in VBScript:

e Do...Loop: Loops while or until a condition is True.

o While...Wend: Loops while a condition is True.

e For...Next: Uses a counter to run statements a specified number of times.

e For Each...Next: Repeats a group of statements for each item in a collection

or each element of an array.

We will discuss the first three.

46

MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

1. For...Next

When you need to loop a pre-determined number of times, use a For... Next loop
structure. The structure uses a loop variable to control the number of loops to be
executed through the code. The programmer provides the control variable and the
parameters of starting value and ending value as well as an increment step. The syntax
is:

For variable = start to end Step increment
‘code that gets repeated
Next

The default increment step is one so the Step specification can be omitted if the default
increment is desired.

Dim x, result The code inside the For loop

x =0 will be executed 50 times.

For x = 1 to 50 What is the value of result at the
result = result + 1 end of the For loop execution?

Next

Response.Write “The value of result = % &result

For increments of 2:

Dim x, result o
The code inside the For loop

x =0

For x = 1 to 50 Step 2 will be executed 25 times since
result = result + 1 the increment is 2.

Next

Response.Write “The value of result = “ &result

Negative increments can be used like Step —2. The only difference is that the start value
must be higher than the end value.

For x = 50 to 1 Step -2

Nested Loop can be performed as well,

Dim x, vy, result

x =0
For x = 1 to 100 The code inside the For loop
For v = 1 to 100 will be executed 10000 times.
result = result + 1
Next
Next
Response.Write “The value of result = % &result
MAGTF Staff Training Program 47

April 2004



ASP 3.0 Tutorial Manual

2. Do...Loop

You can use Do...Loop statements to run a block of statements an indefinite
number of times. The statements are repeated either while a condition is 77ue or until a
condition becomes True. You can place a conditional test at either the start or end of the
loop structure. This provides you with the ability to force a loop to execute at least one.
The syntax is:

Do While condition

. code within the loop goes here
Loop

or

Do
. code within the loop goes here

Loop While condition

Examples:
Dim result It is the same behavior from the
Result = 0; For...Next structure.
Do While result < 50 The condition is tested before
result = result + 1 executing the code.
Loop
Response.Write “The value of result = “ &result

Dim result
Result = 0;

Do The condition is tested after
result = result + 1 execution of the code.

Loop While result < 50

Response.Write “The value of result = % &result

The Do...While version may not execute once because the conditional test at the start of
the loop may not evaluate True. On the other hand, the Do..Loop While version places
the conditional test at the end of the loop, so the loop must execute at least once.

As with all the other looping structures, the Do...Loop structure can be nested like the
For...Next loop.

3. While...Wend

The While... Wend structure is identical to the Do... While loop structure. Wend
takes place of the Loop keyword in the previous examples. The While... Wend executes
until the conditional statement following the While becomes True. The syntax is:

48 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

While condition
‘do something
Wend

Example:

While result < 50
result = result + 1
Wend

The looping will continue
while result is less than 50.

MAGTF Staff Training Program
April 2004

49



ASP 3.0 Tutorial Manual

VI. Processing user input request (Request Object)

Anytime you visit a Web page, there is a communication going on between your
computer, the client, and the computer providing you the Web page, the server. There
are times when the client specifically sends data to the server like entering an e-mail into
a form. To interact with the client or visitor, your script should be able to request
information from the visitor. This is done by the use of the Request object.

A. The Request Object

You can think of the Request object as the input object. This object holds information
that was sent from the browser to the web server. It is responsible to make that
information accessible to the ASP application. So, you use the Request object to read
that information from the client’s browser. It uses five collections (a group of common
objects) to provide for communication between the client browser and Web server.

B. How to get data from the user to the server?

HTML forms allow the user to enter data into control on a Web page. Then they can
send the information to the Web server by clicking a Submit button. On the server, you
can use an ASP page along with the Form collection to handle the information sent.

1. HTML Forms

When you create a form in HTML, you have to give it a method describing how
the form is to be processed. The to options are GET and POST, being POST the most
commonly used. If the form’s method is POST, the information entered in the form by
the user on the client side is accessed through this FORM collection. If the method is
GET, the information can be found in the QueryString collection.

If you create a form in HTML, you can also specify an action. If you intend to handle the
form using ASP page, put the page’s name that will handle the form in the action
attribute.

This is the method that most people think of when they want to send user data to a Web
server. A form can be as simple as a single text box for searching, or as complex as a on-
line mortgage application. A simple form looks like:

Form’s name —_— « Page that will

<form method="post" name="LoginForm" action="check password.asp"> Process the
<tab order="2" width="400"> data received
/:i>
<td width="91"><b>Login: &nbsp;</b></td>

Method post <td width="295"><input name="login"></td>

</tr> \
S0 'Reque's ! <tr> Name of the text
object will be <td width="91"><b>Password:</b></td> box. Request
capab1§ of <td width="295"><input type="password" object can ask for
accessing the name="passworde></td> the information
information </tr>

</table>

50 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

<p><input type="submify' value="Login" name="Login"> <input
type="reset" value="Reset' eset"></p>
</form>

Type of
submit. This
will be a
submit button
with label
Login: [ Login

|Passw0rd: ||

Figure 20 HTML Form

We have two “variables” or “text boxes” that we need to get information from, login and
password. In the page that is handling the form, you may want to process the values
received from the form. For example you want to validate and authenticate the login and
password provided by the user in order to allow the access to your web site. You can do
that using the Request object:

<

o\°

password = Request.Form ("password")
login = Request.Form("login")
We are getting the information
> from the form and assigning it
to two local variables.

oo

or you can use the shortcut:

o\

<

password = Request ("password")

Request.QueryString is used
login = Request ("login")

when you are using the Get
method on the form to pass

> information.

oo

You do not have to specify the Form collection. When you use this syntax, the Request
object looks in the Form collection for the name you send it.
If the Form was using the Get method like:

<form method="get" name="LoginForm" action="check password.asp">
<table border="2" width="400">

then you would be using Request. QueryString instead of Request. Form. This method is
noticeable in the URL part of the Web browser. All your items passed will show there.
Remember, there is a size limit when using the GET method of about 1KB.

MAGTF Staff Training Program 51
April 2004



ASP 3.0 Tutorial Manual

C. Processing results

No that you know how to get the information out of the form, there are basically two
ways to manage the information, assigning it to local variable or requesting them directly
from the form. For example:

<

o\

Users Password = Request ("password")
Users Login = Request ("login")

strSQL = "SELECT * FROM Names WHERE Password = '" &
Users Password & "' and Login = '" & Users Login & "'"
%>

In the previous piece of code we are assigning to local variable password and login the
respective information inputted by the user in the form. Then, we are using those
variable in the query statement. Another way to do that is bypassing the assignment of
those variables and substitute them for the Request object itself.

<%

strSQL = "SELECT * FROM Names WHERE Password = '" &
(Request ("password")) & "' and Login = '" & (Request
(lllogin")) & wayn

&>

As you can notice, the second method looks crowded and could be confusing at the
beginning. The first method is more readable.

52 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

VIl. Lab 2: Using a form to gather user input and
displaying results

In this Lab you will create a form that will take information from the user, First Name,
MI, and Last Name and submit the information to the server. You will have an Active
Server Page processing that information and displaying it in a separate page.

Type the following code to create the form that will capture the user’s information. Save
the file with an . htm1 extension under the virtual directory you created or under the
default virtual root directory C: \Inetpub\wwwroot.

<HTML>

<HEAD>
<TITLE>
Personal Information
</TITLE>

</HEAD>

<BODY>
<form method = "POST" action = "answering.asp">
<FONT COLOR="#FF0000"™ SIZE=5>
Personal Information

</FONT>

<table border="1" width="667" height="30">

<tr>
<td width="104" height="1">First Name</td>
<td width="160" height="1"><input type="text"
name="FName" size="20"></td>
<td width="65" height="1">MI</td>
<td width="121" height="1"><input type="text"
name="MI" size="5"></td>
<td width="175" height="1">Last Name</td>
<td width="186" height="1"><input type="text"
name="LName" size="20"></td>
</tr>
</table>
<p>

<input type="submit" wvalue="Add New User" name="Add">
<input type="reset" value="Reset" name="reset">

MAGTF Staff Training Program
April 2004

53



ASP 3.0 Tutorial Manual

</p>

</form>

</BODY>

</HTML>

Personal Information
‘Pirst Mame ||Migue| ‘I\rﬂ ||A Last Mame ||Aya|a

Add New User | Resetl

Figure 21 Lab 2 Using a Form Example

Type the following Active Server code and save it as answering.asp in the same
virtual directory you saved the previous file.

<HTML>

<HEAD>
<TITLE>
Personal Information Display
</TITLE>

</HEAD>

<BODY>

<hl> Hello, <%=Request ("FName")%> !</hl>
<br>

The information that you provided me is:
<p>

First Name: <%=Request ("FName") %>
</p>

<p>

MI: <%=Request ("MI") %>

</p>

<p>

LastName: <%=Request ("LName") %>

</p>

</BODY>

</HTML>

54

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<} Personal Information Display - Microsoft Internet Explorer provided by AT&T WorldNet Service

File Edit Wiew Favorites Tools Help

15|

WHBack -~ = - @ ot | @Search (3] Favorites @Med\a @ | %v = E - @

Address I@jhttp:Uayalama;‘asp".fuZDcIass“foZUchs)’answermg.asp

I & |Links B

|@ Daone

Figure 22 Lab 2 Response to the user

=
Hello, Miguel !
The information that vou provided me iz
First Mame: Miguel
ML A
LastMName: Avala
-]

l_l_ E Local intranet

MAGTF Staff Training Program

April 2004

55



ASP 3.0 Tutorial Manual

56 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

VIIl. Session Object

A. Session Variables

The Session object represents the current user’s session on the web server. It is user
specific, and its properties and methods allows you to manipulate the information on the
server that is specific to that user for the duration of that user’s connection. So, a session
is the interval a single user spends interacting with your application during a contiguous
length of time.

1. Assigning Session Variables

Session variables are declared in a manner similar to declaring application
variables. To create or reference a session variable, use the Session object and name of
the variable with the following syntax:

Session (variableName)

Where variableName is the name of the session-level variable. Session-level variables
are only available to the user session that created the object and cannot be shared among
separate user sessions. This variable can be accessed from any page as long as the user is
using the application.

To add a Session variable, you simply assign a value to session variable name.

Session ("Permissions") = "user"

In the above line of code a Session variable named Permissions is assigned the value of
user. This variable will be accessible from any page as long as the user is in the same
application. In this way we can provide the user specific access to certain pages based on
the permission given.

If Session("Permissions") = "user" Then
response.redirect "Show Records.asp"
Elseif Session ("Permissions") = "admin" Then

response.redirect "Admin.asp"
Else

response.redirect "login.asp"
End If

2. Clearing Session Variables

You can clear a Session variable by setting it to a null string (
to the VBScript Empty value. For example:

(134

) or by a setting it

Session ("Permissions") = ""
Session ("Permissions") = Empty

MAGTF Staff Training Program
April 2004

57



ASP 3.0 Tutorial Manual

58 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

IX. Lab 3: Use of Session Variables

In this Lab you will use the form from Lab 2. We will add some code in order to have
Session variables.

Type the following code and save the file as answering. asp under the virtual
directory you created or under the default virtual root directory
C:\Inetpub\wwwroot.

<HTML>

<HEAD>
<TITLE>
Personal Information Display
</TITLE>

</HEAD>

<BODY>

<%
Session ("FName") = Request ("FName")
5>

<br>

We assign a session
variable (FName) and
we use an If statement
to check the value of
it. If the session
variable meets our
condition then the first
block is executed, the
second block
otherwise.

<% If Session("FName") = "Miguel" Then %>

<hl> Hello and welcome back <%$=Request
("FName") %> !</hl>

<hl> Hello, <%=Request ("FName")%> !</hl>
<% End If %>

<br>

The information that you provided me is:
<p>

First Name: <%=Request ("FName") %>

</p>

<p>

MI: <%=Request ("MI") %>

</p>

<p>

LastName: <%=Request ("LName") %>

MAGTF Staff Training Program 59
April 2004



ASP 3.0 Tutorial Manual

</p>

</BODY>

</HTML>

/3 Personal Information Display - Microsoft Internet Explorer provided by ATET WorldNet Service =2

File Edit Wiew Favorites Tools Help ﬁ

aBack - = - @ £t | @Search [Fe] Favorites @Med\a @ | %' =] © @ @
Address I@jhttp:Uayalama;‘asp".fuZDcIass“foZUchs)’answermg.asp H ﬁGo |Links 54
Bl

Hello and welcome back Miguel !

The information that you provided me iz
First Name: Miguel
ML A

LastMame: Avala

El
|@ Done | l_l_ E Local intranet

Figure 23 Lab 3 Session Variables

60 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

X. Responding to the user (Response Object)

A. How to send output to the user’s browser

In the chapter Processing User Input (The Request Object), we talked about how to get
information from the user and in Lab 2 we used the Request object to display user
information using the syntax:

<p>
First Name: <%Request ("FName") %>
</p>

A better method to print output uses the Write method of the Response object.

B. The Response Object

If the Request object is the input object, then the Response object is just the opposite, the
output object. The Response object allows you to send information from the Web server
to the browser.

Probably the most important methods of the Response object are the Redirect method,
and the Write method.

C. Response.Write
The Write method is used to send output to the browser. It has the following syntax:

Response.Write variant

where variant is any variant data type supported. For example, to display the time a page
was requested by using the Write method, we could use the following syntax:

<% Response.Write Now %>

or the shortcut

The above piece of script will produce:

5/22/03 8:39:20 PM

So, the Response. Write() method can be coded inside a script at the location on the page
where the system date and time should appear, as well as other dynamic
information/variables. In the previous example, it can write HTML text combined with
the Date() and Time() values retrieved from the server.

<

o\°

MAGTF Staff Training Program
April 2004

61



ASP 3.0 Tutorial Manual

Response.Write ("<b>The current date is " & Date())
Response.Write (" and the current time is " & Time () &
1] .</b>")

%>

Note that the Response.Write() method can contain literal text strings (enclosed in
quotes), values retrieved from VBScript functions or other VBScript commands, along
with HTML tags (enclosed in quotes as part of a text string) to control output formatting.
Text strings and server values are connected together, with the VBScript concatenation
operator & (ampersand) to produce a resulting string of text characters that can be written
to the Web page. The general format for the Response. Write() method is shown below:

Response.Write("text string" | & | server value | "<HTML
tag>")

In the first line of the above script the literal text string "<b>The current date is " is
concatenated with the server value produced by the Date() function to create the output
string The current date is 5/24/2003. In the second line of the script the literal text string
" and the current time is " is concatenated with the value of the Time() function and with
the string ".</b>" to create the output string and the current time is 11:18:19 PM.
Alternately, the script can be written as a single line of code,

<%

Response.Write ("<b>The current date is " & Date() & " and
the current time is " & Time () & ".</b>")

%>

where various text strings and server values are concatenated to produce the output line.
The Response.Write () method has a second, abbreviated format that makes it easy
to embed server values within the HTML coded on the page. These scripts are in the
following format,

<%= server value %>

where the symbols <%= and %> enclose a server-generated data value. This script is
placed anywhere within the HTML coding on a page to display the value at that location
on the page. The following output, for example,

The current date is 5/24/2003 and the current time 1is
11:18:19 PM.

is displayed with the following HTML code and embedded server values positioned at
the above location:

62 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<b>The current date 1is <%=Date () %> and the current
time 1is <%=Time () %>.</b>

As the ASP processor renders the HTML code for return to the browser, it inserts the data
values given by the Date() and Time() functions within the HTML code. This is a
shorthand way of coding scripts that produce single data values and is an alternative to
coding

<b>The current date is <% Response.Write(Date()) %> and the
current time is <% Response.Write (Time()) %>.</b>

where a full script (even if a single line of code) is embedded on the page.

D. Response.Redirect

The Redirect method simply tells the browser where to go. It is useful for redirection
when you know in advance that you need to redirect and you have the exact location of
the redirection URL. The syntax:

Response.Redirect (http://rigthpage.htm)

For example, redirection is particularly useful when you are making decisions based on a
user’s actions. Suppose you have a login page and you are authenticating and validating
users in order to provide access to certain pages based on privileges. If the privilege is
user then you can direct the user to the respective page. On the other hand, a user with an
administrative privilege will be redirected to a page where all the administration tools
would be available. Example:

<%
Permissions = Session ("Permissions")
If Permissions = "user" Then
response.redirect "Show Records.asp"
Elseif Permissions = "admin" Then
response.redirect "Show RecordsAdmin.asp"
Else
response.redirect "login.asp"
End If
%>

MAGTF Staff Training Program 63
April 2004



ASP 3.0 Tutorial Manual

64 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Xl. Lab 4: Responding to the user

In this Lab you will use the form from Lab 3. We will add some code in order to use the
Response object.

Type the following code and save the file with an answering. asp under the virtual
directory you created.

<HTML>
<HEAD>
<TITLE>
Personal Information Display
</TITLE>
</HEAD>
<BODY>
<%
Session ("FName") = Request ("FName")
%>

<br>
<% If Session("FName") = "Miguel" Then %>

<h1l> Hello and welcome back <%Response.Write
("FName") %> !</hl>

<hl> Hello, <%Response.Write ("FName")$%> !</hl>

$ End If %> The code is exactly the same as
Lab 3 with the only difference

<br> that we substituted the
The information that you provided me is: =Request ("FName") with
<p> Response.Write
First Name: <%= ("FName") %> ("FName") .
</p>
<p> ) e
MI: <%= ("MI") %> In fact, as discussed earlier in this chapter the
</p> = ("FName") is equivalent to
<p> Response.Write ("FName") . Sowe were
LastName: <%= ("LName") %> using it in Lab 3.
</p>
</BODY>
</HTML>

The result from will look exactly the same as for Lab 3.

MAGTF Staff Training Program 65
April 2004



ASP 3.0 Tutorial Manual

66 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Xll. Database Overview

A database is a repository for related collections of data. An address book is an example
of a database in which you store names, addresses, and telephone numbers of friends,
relatives, and business contacts. The information in a database is stored as a table.

A. Planning a database
The goal of the database planning process is to identify the following:

e the information you currently track
o the information you want or need to track in the future
e the reports you need to produce

1. Database Structure

Before storing the information, you need to design a database structure. Each
database file has the following elements:

Field: contains one portion of the data (name or telephone number), also known
as a column.

Record: contains related information (name, address, and telephone number), also

known as a row. A single record is made up by one or more fields.

Database Table: made up by one or more records (table of products on the
display, table of customers’ names and addresses).
Database File is the physical file stored on a disk and contains Table, Query, Form, and
Report.
The application we are trying to create builds onto the password checking pages that we
will be using. It is quite simple, yet it introduces you to most of the considerations you
will face when designing data-driven Web pages. In this example, we will set up a table
of accounts against which we can check user accounts and passwords during log on. If
the user does not enter a valid account and password, they will not be permitted to view
the show_records.asp page. We will need to create a database and tables to contain all the
necessary user information pertaining our application.
For purposes of this tutorial you will only need to create one database. Any and all tables
necessary for future applications can be created in this database. To simplify access to the
database, you can place it in the same directory as your Web pages or create a folder to
hold the database. The important thing is that at time of coding you need to know the
location of the database. In this and subsequent lessons we will assume the existence of a
database named Users.mdb. You can name your database whatever you choose.
Within this database you need to create a new table named Names. It's always a good idea
to name your databases and tables without embedded blank spaces in the names. The
structure of this table is shown below.

MAGTF Staff Training Program
April 2004

67



ASP 3.0 Tutorial Manual

Field Name | Field Type Field Size
ID AutoNumber | Long Integer

SSN Number Long Integer
FName Text 15 In order to have the passwords
L Name Text 15 to show as asterisk ( * ) in the
NI Text > ‘Fable, you need to specify the
Rank Toxt T0 input format as Password.
Unit Text 50
Login Text 15
Password Text 15
Permissions | Text 10
Phone Text 15

Spouse Text 15

Table 1 Names Table Structure

These specifications are entered when creating a database table in Access. They control
the "structure" of the table, i.e., the fields of data that will be maintained in the table. At
the same time, as you define each field, you will need to make sure that three other
specifications are made.

The point to be kept in mind is that you are using Access only to create a database and
table structure. You will not be using any of the processing features of Access. All
considerations related to key fields, indexing, retrieval, updating, and the like are
controlled through scripts, not through the Access software. Once you have created a
database structure, you can effectively forget about Access.

Once you have created the table structure, open the table in "datasheet" view and insert a
few example records. This is done for testing purposes. Later, we will consider how to
populate database tables from Web forms. When you are done, you should have created a
Names table that looks like the following (Enter your own information):

ID SSN FName | LName | MI | Rank | Unit Login | Password | Permissions Phone Spouse
1 | 123456789 | Miguel | Ayala | A | Capt | MSTP | ayalama | ¥**¥*** admin 7037846001 | Daisy
Table 2 Names Table Data

2. Building the database in Microsoft Access

A Microsoft Access database is a repository for tables of information. A database
table is a collection of rows and columns for storing data. The columns represent the
different fields of data; the rows are the different records.

a. Creating a Database

Tables are the main units of data storage in Access. Recall that a table is
made up of one or more columns (or fields) and that a given column may appear in more
than one table in order to indicate a relationship between the tables.

68 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

When you open Microsoft Access
you will see the dialog box at the

right. Click the "Blank Database"

button to indicate that you are

creating a new database. Then click
"OK".

File New Database

Microsoft Access

2 x

—Create a new database using

4

: ccess database wizards, pages, and projects
LY datab izard d project
—

—

% Blank Access database

[

é’? " Open an existing File

Dnhavalamalclasses',. . . \UsersDBY Jsers
[rhavalamalclasses)Assessment A5PY, . \EFCATDE
[nhavalamalclasses\III_MEF_ASP_CLASS | Users

Morthwind Sarmple Database ;I

o]

Cancel |

Figure 24 Creating a new Microsoft Access
Database

2%

Save in: II:l UsersDB j = | @ X o ~ Taols -
o
My Documents
Favorites
File narne: ILIsers| j & create I
Save as bype: IMiu:ru:usu:uFt Access Databases j Zancel |

Figure 25 Naming and saving the new database in Access

When the "File New Database" dialog box appears, name it with your Users .mdb and
save it in your directory on the server by clicking the "Create" button.

MAGTF Staff Training Program

April 2004




ASP 3.0 Tutorial Manual

b. Creating a Table

Next, you are presented with a set of options for creating or selecting
tables and other components of your database. You can create your table using the
Wizard, in Design View or by entering data into generic fields. We will do it in Design
View. Click the Design button.

=

g

Create &

able by using wizard
Create table by entering data

Figure 26 Access Main Window

=0l x|
Field Mame Data Type Description |«

| »|1ID AutaMumber

% |55M Murmber

| [FMame Text

| [LMame Text

| |MI Text

| |Rank Text

| [Unit Text

| |Login Text

| |Password Text

| |Permissions Text

| |Phone Texk

| |Spouse Texk

- ~|

Field Properties

General I Loakup I

Field Size Long Integer

New Yalues Increment

Format

Caption

Indexed ‘es (Mo Duplicates) A field name can be up ko 64

characters long, including spaces.
Press F1 for help on figld names.

Figure 27 Table Design View

70 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

You are now ready to enter your field specifications. For each field you create, assign a
Field Name (cannot include blank spaces), select the Data Type of the field (Text, Memo,
etc.), and specify the Field Size to hold the largest number of expected characters. Assign
the primary key to the SSN field.

After you are done designing your table, choose "Save" from the File menu. The Save
dialog box appears and you can assign a name to your table and click "OK."

The new table is listed under the Table tab of the database dialog.

By double-clicking on the table in the database dialog you can open the table in
"datasheet" view. This view presents the columns and rows of the table where you can
enter your data. Just type your information in the columns and tab to the next column.
When you have finished with one record, a new blank line is appended to the table for
entering the next record. After entering all your information, close the table.

ol
J File Edit Yiew Insert Format Records Tools MWindow Help ;Iiléﬂ
- @8Ry smes o @8l YR A Da- 0.

[ 0] SSH | FHame | LName M | Rank | Unit | Login | Password | Permissions | Phone | Spouse
id 55 123-456789 Miguel Ayala A Capt METP ayalama e admin (540 784-6001 Daisy
*| umber) - -0

Record: 14 4| 1 e | eiles#]of 1

|Datasheet View T y

Figure 28 Adding Information into the Database

When you are creating tables to be accessed through scripting it is usually not necessary
to enter original data into the tables. You only need to create the table structure. You will
normally fill the table with information collected from Web forms.

MAGTF Staff Training Program
April 2004

71



ASP 3.0 Tutorial Manual

72 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Xlll. Introduction to Structured Query Language (SQL)

Most database management systems provide easy and faster ways of extracting
information from their tables. The common denominator of these methods is SOL, the
Structured Query Language built into these systems. SOL is a full-service language for
maintaining information in a database.

When using SOL methods of working with databases, you are relying on the database
management system to perform the work. Rather than coding a server script to access
tables or to maintain the data in the databases, this work has been passed to the DBMS.
The script simply issues a request to the DBMS, which independently carries out the task.
This method promotes the notion of a three-tier, client/server processing system where
data access and database processing is localized to the database server.

A. SQL Statements

1. The SELECT Statement

The most useful of the SQL statements is the SELECT statement. This statement
is used to select records from a database table. The selection can encompass the entire
table with all of its fields, or it can be restricted to certain fields in certain records
matching a given criteria. The group of selected records itself becomes a recordset that
can be processed in the same fashion as used for an entire table. The general format for
the SELECT statement is shown below:

SELECT * | fieldl[,field2]...

FROM Tabl eNane

VWHERE condi tion

ORDER BY fieldl [ASC/DESC] [, field2 [ ASC/I DESC] ]

The keyword SELECT is followed by one of two specifications identifying the fields of
data to be selected from a table. An asterisk (*) denotes that all fields are to be selected
for each record. Otherwise, you can provide a list of field names, separated by commas,
and only those data fields will be selected. The FROM clause identifies the table from
which these records and fields are to be selected.

For example, the statement:

SELECT * FROM MyTable

selects all records from MyTable and includes all (*) of the fields that make up a record.
The resulting recordset is identical to the one returned when opening a full table. In
contrast, the statement:

SELECT LastName, FirstName FROM MyTable

selects all records from the table, but only provides the fields named LastName and
FirstName from among all the fields in the records. In this case the resulting recordset
contains as many rows as there are records in the table, but only two columns.

MAGTF Staff Training Program
April 2004

73



ASP 3.0 Tutorial Manual

a. The WHERE Clause

In both of the above instances, all records are retrieved from the table.
Only the fields that comprise a record differ. There may be cases where you do not want
or need to retrieve each and every record in a table. You might wish to select only those
records that meet certain condition. The WHERE clause is used for this purposes.
The keyword WHERE is followed by one or more selection criteria. A common way of
using this feature is to check for equality, that is, to look for a matching value in one of
the record's fields. For example, if you are processing a set of Marines records based on
the base in which they are located, you might wish to select only those records where the
state field contains the value "Quantico". So, you would issue the SQL statement:

SELECT * FROM Marines WHERE Base='Quantico'

and the database management system would deliver only those records that had a
matching criteria. You can, in fact, use any of the common conditional operators,

= (equal to)

<> (not equal to)

< (less than)

> (greater than)

<= (less than or equal to)

=> (equal to or greater than)

to formulate your selection criterion. Plus, you can combine tests using the logical
operators AND, OR, and NOT to expand or contract your selection:

SELECT * FROM Marines WHERE base='Quantico' OR base='Camp
Lejeune'

Note in these examples that the selection criterion values are enclose in single quotes
(apostrophes). Any time you are matching against a database tex? field, the criterion value
must be enclosed in single quotes (WHERE base = 'Quantico'). If you are testing
against a numeric field, the data value is not enclosed in quotes (WHERE Number >
10). If you are testing against a date/time tield, the criterion value is surrounded by #
symbols (WHERE TheDate > #1/1/01%).

b. The ORDER BY Clause

A SELECT statement can also include the ORDER BY clause in order to
arrange, or sort, the set of records retrieved from a table.
The ORDER BY clause identifies the names of fields on which to sort the records. If more
than one field name is supplied, then sorting takes place in the order in which the names
appear, separated by commas. The first field becomes the major sort field, the second
field becomes the intermediate sort field, and the third field becomes the minor sort field.

74 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Thus, you could arrange a set of names in order by last name, first name, and middle
initial by using a SELECT statement that looks like the following:

SELECT * FROM Marines
ORDER By LastName, FirstName,MiddleInitial

You can also specify whether ordering is to take place in ascending or descending
sequence by coding ASC or DESC following the field name. The default order is
ascending (ASC), which doesn't need to be coded.

SELECT * FROM Marines
ORDER By LastName (DESC) ,FirstName (ASC) ,MiddleInitial

The WHERE and ORDER BY clauses are optional in a SELECT statement and either can
appear. If both are included, however, the WHERE clause must precede the ORDER BY
clause.

MAGTF Staff Training Program
April 2004

75



ASP 3.0 Tutorial Manual

76 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

XIV. Accessing a Database

The most basic purpose of ASP is to allow a website to connect to a database and show
"Live data". It is called live data because ideally the database administrator will be
updating the database routinely which will therefore automatically update the website.

So how do you do it? Well, it's actually pretty simple. First, you need to understand that
there are two ways to connect to a database. You can use a DSN or DSN-less connection,
both accomplish the same thing. A DSN is a Data Source Name that is setup on the
server. You can think of it as a shortcut to your database because it contains the driver
and database path information to your database. If you have your website hosted by an
outside company like most people do, you will need to contact them directly and ask
them to setup the DSN for you. You will have to tell them where your database is located
within your website and you will have to give the DSN a name.

A. The Connection Object

Before you can retrieve any data from a database, you have to create a connection to that
database. The ASP Connection Object contains the properties and methods necessary to
make a link between a Web page and a database so that the database can be accessed
through scripts appearing on the page. In order to make available these properties and
methods to our own page we need to create a Connection Object for our own use.

B. Including ActiveX Data Objects (ADO) Constants

The ADO are a set of objects that you can use to access databases. Each constant
represents a numeric value. For example, in the adovbs.inc you will find the four
constants for the recordset type defined as follows:

Const adOpenForwardOnly = 0
Const adOpenKeySet =1
Const adOpenDynamic = 2
Const adOpenStatic = 3

So, why do we use constants? Consider the following two lines:
objRec.Open “Contact”, strConnect, 0, 1, 2

or
objRec.Open “Contact”, strConnect, adOpenForwardOnly,
adLockReadOnly, adCmdTable

Which one of these lines is easier to read? At the time of finding a mistake, the one with
a meaningful constant name will actually tell you something.

You can use the #1include directive to read another page in and make it part of the
current page. By default, connections are read-only, but you can create a read-write or
write-only connection by setting the Connection object’s Mode property. In order to
have those constants available to your page, you have to include the file adovbs.inc, if

MAGTF Staff Training Program
April 2004

77



ASP 3.0 Tutorial Manual

you are using VBScript or adojavas.inc if using JScript, if the file is in the same folder as
your application.

<!-—-#include file="adovbs.inc"-->

A better solution may be to create a folder under your main folder and called it
include. Then you can have all the include files there. If you decide to do that, your
#1include line looks more like:

<!—-—#include file="include/adovbs.inc"-->

C. Creating an ODBC connection

ODBC stands for Open Database Connectivity. It allows programs to access lots of
different kinds of databases in almost the exact way.

The method for creating a Connection Object is to use the VBScript Set statement, calling
upon the Server Object to create a Connection Object for our script. For example

o\°

<

Dim ConnectionObjectName
Set ConnectionObjectName =
Server.CreateObject ("ADODB.Connection")

oo

>

where ConnectionObjectName the name you want to assign to the connection
object.
The Server Object uses its CreateObject method to create an ADODB Connection object.
This object is assigned to a ConnectionObject name that we provide and through which
we use the properties and methods of the object. The ConnectionObject can be any name
of your choosing. In creating Connection objects, your only decision is the name to which
you want it assigned. All of the other parameters in the Set statement must be coded as
shown.
The primary need for a Connection object is to open a connection to a database. The
Connection object has an Open method for just this purpose. This method is supplied
with a "connection string" identifying the two pieces of information necessary for a script
to link to a database:

1. the location of the database and

2. the type of database driver used to access it. Database connections can be

made through either of two methods.

D. ODBC Data Source Name (DSN)-less Connection
1. DSN vs DSN-less

A Data Source Name, or DSN, is a system name that is given to a database.
Here is an example of a DSN connection:

78 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<

o\

DIM Connect

Set Connect = Server.CreateObject ("ADODB.Connection™)
Connect.Open = "MyDSNDatabase"
5>

where MyDSNDatabase is the DSN name given to the database.

Personally, I prefer to use DSN-less connections to databases. The reason is that for
maintenance and updating purposes, it is easier to make changes to database connections
on your own rather than having to call or email your hosting company and wait for them
to update your DSN.

There is a little more code involved with DSN-less connections, but it is worth it. Here is
an example of a DSN-less connection:

<%
Dim dsn 'data source (database) name & path i.e.
Dim Conn '"Connection object

Set Conn = Server.CreateObject ("ADODB.Connection™)

dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsof{/YAccess Driver (*.mdb)}kx\

Conn.Open dsn

- The database file
o> To avoid writing absolute path use the s lventadl wicler
Server.MapPath method. This will accept a Taet Talldker T e

relative or virtual path and returns a physical path.

same directory as
Good when you do not have control of the server.

the application.

DSN-less which requires no server setup, just a carefully constructed connection string as
demonstrated below. DSN-less connections demand that that you know the name of the
file (i.e. file based databases like Access). This is faster than a system DSN since it saves
a trip to read the registry each attempt.

E. The Recordset Object

The ASP Recordset Object contains the properties and methods necessary to extract data
from a database table and to make that set of records available to a script. Normally, you
need to create as many Recordset Objects as there are tables being accessed. In the

MAGTF Staff Training Program 79
April 2004



ASP 3.0 Tutorial Manual

present example, we are accessing the single Accounts table from Database.mdb.
Therefore, we need a single Recordset Object for our script.

The general format for creating a Recordset Object is similar to the method used to create
a Connection Object,

<

o\

Dim RecordsetObjectName
Set RecordsetObjectName =
Server.CreateObject ("ADODB.Recordset™)

oo

>

where, RecordsetObjecNamet is a name assigned to the object and by which it can be
referenced in our script. The Server Object uses its CreateObject method to create an
ADODB (Active Data Object DataBase) Recordset Object and assigns it to the name
provided.

1. The Beginning of File (BOF) Object

If the value of the BOF property of a Recordset object is True, the current record
pointer is positioned one record before the first record in the recordset. This is a read-only
property. You can use the BOF property in conjunction with the EOF property to ensure
that your recordset contains records and that you have not navigated beyond the
boundaries of the recordset.

<

o\°

If Not rs.BOF Then

' There are records. Use the EOF property to loop
through all the records in the recordset and
display them to the screen.

oo

>

2. The End of File (EOF) Object

If the value of a Recordset object’s EOF property is True, the current record
pointer is positioned one record after the last record in the recordset. This is a read-only
property. You can use the EOF property in conjunction with the BOF property to ensure
that your recordset contains records and that you have not navigated beyond the
boundaries of the recordset. Note that the value of EOF is also True if there are no
records in the recordset.

AN
o\

Do While Not rs.EOF

o\
\

80 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

<tr>

<td width="63"><%=rs ("Rank") %$></a></td>

<td width="158"><%=rs ("FName") $></td>

<td width="41"><%=rs ("MI") %$></td>

<td width="113">

<a href=detail.asp?IDNum=<%=rs ("ID") $>><%=rs ("LName") $></a></td>
<td width="54"><%=rs ("Unit") %$></td>

<td width="152"><%=rs ("Phone") $></td>

</tr>

<%
rs.MoveNext
Loop

>

o\

F. Connecting to a Database

Once you have a Connection object already created, you are ready to connect to the
database.
<%

ConnectionObjectName.Open dsn

oo

>

1. Opening a Table

Once a Recordset Object is created, its built-in Open method is available to
extract information from a database table and make it available to our script for
processing. The general format for extracting ALL the information from a table is to open
the entire table.

o\

<

RecordsetObject.Open "TableName", ConnectionObject

oo

>

Here, TableName is the name of a database table and Connection object is the name of an
existing connection to the database containing the table.

o\

<

Set Conn = Server.CreateObject ("ADODB.Connection™)
Set rs = Server.CreateObject ("ADODB.Recordset™)
dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsoft Access Driver (*.mdb) };"

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Conn.Open dsn

rs.Open “Names”, Conn

oo

>

With this statement in place, our script has extracted the entire Names table from the
Users.mdb database and made it available for processing by the script.

2. Selecting Records

When the Names table is opened, the entire data can be loaded using the
Recordset object. As in the Request.Form or Request.QueryString Collection, the data
values contained in the recordset can be referenced through the notation rs
("FieldName'"), where the FieldName is taken from the field names assigned when the
table was created in Access. There is more than one data value that can be referenced
through a recordset field name (that is the purpose of a database). For instance, under
FName and the LName fields in the Names’ table you could be referenced them as rs
("FName") and rs ("LName").

<tr>

<td width="63"><%=rs ("Rank") %></a> </td>

<td width="158"><%=rs ("FName") %> </td>

<td width="41"><%=rs ("MI") %> </td>

<td width="113"><a href=detail.asp?IDNum=<%$=rs ("ID") %$>>
<%=rs ("LName") $> </a> </td>

<td width="54"><%=rs ("Unit") %> </td>

<td width="152"><%=rs ("Phone") %> </td>

The HTML code of <href> will create a
link to the detail.asp page passing the
information /D and LName contained in
the recordset named rs.

</tr>

Home

Add Teer p

1st Battalion Web Page el Do ,@%? Marines P

b The Few. The Proud.
Search User

| Alpha Roster

Rank  FirstName | ML losiionam kit Phone |

LiCol Michael T Burke METP TOZTE44972

Capt Miguel A Ayala MSTP 7037846001

Capt Sean 1 Sadlier WETP T0ETE44315
Figure 29 Selecting Records from a Database The above code builds this part of the page.
82 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

3. Iterating thorough a Recordset

It is obvious that a database will have more than one entry in the tables. You will
want to iterate through all the records in order to find a specific record or to display them
all. An appropriate VBScript iteration structure is the Do While...Loop.

When a recordset is first opened, the recordset cursor is positioned at the first record. As
we continue our login and password checking (login page application), we need to
advance the cursor through the recordset, examining each record, in turn, until we find
one with a matching login and password. If we don't happen to find a matching record,
the cursor will eventually be advanced past the end of the recordset .

Recordset objects have a property setting that indicates whether a recordset cursor has
advanced beyond the last record in the recordset. This is the EOF (end-of-file) property.
If there is an EOF property associated with the recordset, then the cursor has advanced
beyond its last record; If there is NOT an EOF property associated with the recordset,
then the cursor has not yet reached beyond the last record.

We can set up a program loop, then, that advances the recordset cursor from one record to
the next, looking for a matching login and password. This loop will continue until we run
out of records to check; until the Recordset object's EOF property is true. By using the
VBScript Do While...Loop construct we can create this loop in the syntax:

Do While Not rs.EOF...Loop; that is, continue the loop so long as there is not an EOF
property associated with our rs recordset.

We still need a method of advancing the recordset cursor from one record to the next.
Recordset objects provide this ability with the MoveNext method. Therefore, we need to
use our rs.MoveNext method to advance the cursor each time through the loop.

Let's add these statements to previous script to create the structure of the loop that iterates
through our recordset:

<%

Dim dsn
Dim Conn
Dim rs

Set Conn = Server.CreateObject ("ADODB.Connection™)
Set rs = Server.CreateObject ("ADODB.Recordset")

dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsoft Access Driver (*.mdb) };"

Conn.Open dsn
rs.Open “Names”, Conn

Do While Not rs.EOF
<tr>
<td width="63"><%=rs ("Rank") %$></a> </td>
<td width="158"><%=rs ("FName") %> </td>
<td width="41"><%=rs ("MI")%$> </td>

MAGTF Staff Training Program 83
April 2004



ASP 3.0 Tutorial Manual

<td width="113"><a
href=detail.asp?IDNum=<%=rs ("ID") %$>><%=rs ("LName") %>
</a> </td>

<td width="54"><%=rs ("Unit") %> </td>

<td width="152"><%=rs ("Phone") %> </td>

</tr>

<

o\

rs.MoveNext
Loop
>

o\

With this code all of the records under the Names table will be presented in the page (only the fields of
Rank, Fname, M1, Lname, Unit, and Phone).

4. Checking for Matching Records

For our login/password page, inside the Do While loop is where we need to check
for a record with a matching login and password.
As the script iterates through its loop, we need to compare rs.Fields("login") with
Request ("login") and rs.Fields("Password") with Request ("Password") for each record
in the recordset, looking for matching values. If both matches are made, then we have
found a valid login and password.
If we find matches to the values entered on the logon form, then we'll redirect the visitor
to the show_records.asp page, effectively ending the script.
If, on the other hand, no matches are found, then the recordset cursor gets advanced
beyond the last record in the recordset, and the EOF property ends the loop. If the loop
ends, this is a signal that no matching record was found. In this circumstance we redirect
to the login.asp page. Another method is to create a message and let the user know that
no matching set was found.

<

o\°

Dim password, login
Password = Request ("password")
Login = Request ("login")

Dim dsn 'data source name & path i.e. the database
name and a path to it

Dim Conn '"Connection object

Dim rs 'recordset object

Dim strSQL 'structured query language statement

Set Conn = Server.CreateObject ("ADODB.Connection™)
Set rs = Server.CreateObject ("ADODB.Recordset™)

dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsoft Access Driver (*.mdb) };"

84 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Conn.Open dsn
rs.Open "Names", Conn

Do While Not rs.EOF
If rs("login") = Login AND rs ("password") = Password Then
Response.Redirect "Show Records.asp"
Else
Response.Redirect "Login.asp"
End If
Rs.MoveNext
Loop

oo

>

Lets see how SQL can be used to simplify our checks for matching login and passwords.
We'll need to replace a portion of the previous code that we used previously to iterate
through the recordset. We'll still need a Connection object to link to our database and
we'll need a Recordset object for use in extracting records from it.

Rather than retrieving the entire table of accounts and passwords and looking through
them one at a time, we'll use an SQL SELECT statement to attempt to retrieve a matching
record. That is, we'll look for a record in which the Password value from the form
matches the Password value in the table, and where the Login value from the form
matches the Login value in the table. We'll compose an SQL statement to select this
record.

If there is a matching record in the table, then this single record will be retrieved; if there
is not a matching record in the table, then NO records will be retrieved. Thus, after
issuing the SELECT statement, the mere existence of a retrieved record indicates that the
user entered a matching account and password; on the other hand, an EOF property
condition for the recordset indicates that the user did NOT enter a correct account and
password.

In general, our statement must end up being in the following format in order to satisfy the
syntactical rules of SQL:

SELECT * FROM Names WHERE Login='the form Account value'
AND Password='the form Password value'

That is, we want to SELECT all (*) fields (the Login field and the Password field ) from
the record in the Names table WHERE the value in the Login field of the table matches
the Login value entered on the form, and the value in the Password field of the table
matches the Password value entered on the form. Both the Login and Password criterion
values must be enclosed in apostrophes since these are defined as text fields in the table.
From a coding standpoint, then, we need to insert references inside the single quotes to
the corresponding form values. In order to accomplish this, we can piece together an SQL
statement from both the "literal" text strings that represent the fixed, unchanging code of

MAGTF Staff Training Program
April 2004

85



ASP 3.0 Tutorial Manual

the SELECT statement along with the variable values taken from the Request object at the
login form. The various pieces of the SELECT statement are

"SELECT * FROM Names WHERE Login='"
Request ("Login")

"' AND Password="'"

Request ("Password")

When these pieces are strung together, we will have a valid SQL SELECT statement that
attempts to retrieve a matching record from the Accounts table. Let's concatenate these
five elements and assign them to a variable named strSQL. We can either compose one
long assignment statement,

strSQL = "SELECT * FROM Names WHERE Login='" &
Request.Form ("Account"™) & "' AND Password='" &
Request.Form ("Password") & "'"

or we can piece the statement together through separate concatenations:

SQL = "SELECT * FROM Names WHERE Login='"
SQL = SQL & Request.Form("Account")
SQL = SQL "' AND Password='"'"

&
SQL = SQL & Request.Form("Password")
SQL = SQL & "'"

Assuming, for instance, that the visitor submitted the login aaaaa and the Password
11111, then the concatenations would produce the following SELECT statement assigned
to variable SQL:

SELECT * FROM Names WHERE Login="aaaaa' AND Password="11111"

This is exactly the statement we need to perform the search. If, on the other hand, the
visitor submits the Login bbbbb and the Password 2222, then the SQL variable would
end up containing

SELECT * FROM Names WHERE Login="bbbbb' AND Password='22222'

As you can see, any Login and Password value submitted by the visitor gets plugged into
the SELECT statement. The statement is assigned to variable SQL, which, in turn, is
issued through the recordset Open statement.

<%

Dim dsn 'data source name & path i.e. the database
name and a path to it

Dim Conn '"Connection object

Dim rs 'recordset object

Dim strSQL 'structured query language statement

Set Conn = Server.CreateObject ("ADODB.Connection™)

86 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Set rs = Server.CreateObject ("ADODB.Recordset")

dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsoft Access Driver (*.mdb) };"

Conn.Open dsn

strSQL = "SELECT * FROM Names WHERE Password = '" &
Request ("password") & "' and Login = '" & Request ("login")
& mwrn

rs.Open strSQL, Conn

If RS.EOF = true Then
Conn.Close 'closes the database connection
set rs = Nothing 'sets the recordset equal to nothing
set Conn= Nothing 'sets the connection object equal to
nothing
response.redirect "Login.asp"
End If

o\°

>

5. Closing Connections and Recordsets

Both Connection objects and Recordset objects have formal Close methods that
can be applied when you are finished with either. Standard programming practice
normally dictates the you close open items when you are done with them. Under ASP,
however, this is not necessary. In fact, ASP automatically closes any open connections
and recordsets when it finishes processing a page.

About the only time you need to close a recordset is when you intend to open it again on
the same page. Or, you might close a recordset if you wish to use the same recordset
name to open a different recordset. However, you should probably use different names
for different recordsets just to keep them straight in your scripts. Whether you use the
Close method is up to you.

<

o\°

Conn.Close 'closes the database connection

set rs = Nothing 'sets the recordset equal to nothing
set Conn= Nothing 'sets the connection object equal to
nothing

oo

>

Both the objects are closed prior to redirecting the user to the welcome.asp page. They
are both closed when the script ends following the loop.

MAGTF Staff Training Program
April 2004

87



ASP 3.0 Tutorial Manual

G. Updating a Database

Before you can make changes to a Recordset, you must make sure you do two things
first:
1. Open the Recordset object with the adOpenStatic or adOpenDynamic cursor used
in the second argument of the Recordset object’s Open method.
2. Use adLockOptimistic for the lock type in the third argument of the Recordset
object’s Open method.
After the above steps, you will be ready to edit the Recordset.

1. Adding records

Adding a new record is relatively easy. It is just a matter of assigning values to
the fields and that the bulk of it. You accomplish this with the AddNew method. This
method adds a new, blank record to the database. Then you set the fields by assigning
your data to the respective fields of the Recordset. When you are done assigning all the
values, execute the Recordset. Update method to commit all changes to the record.

rs.AddNew

rs ("SSN")=Request ("SSN")

rs ("FName") = Request ("FName")
rs("MI") = Request ("MI")

rs ("LName") = Request ("LName™)

(
(
(
(
rs ("Rank") = Request ("Rank")
(
(
(
(
(

rs ("Unit") = Request ("Unit")

rs("login") = Request("login")

rs ("Password") = Request ("Password")

rs ("Permissions") = Request ("Permissions")
rs ("Phone") = Request ("Phone")

rs.Update

2. Updating records

If you know how to insert records, then updating then is piece of cake. First, you
need to position the current pointer to the record that you wish to update. Use a proper
SQL statement to achieve this (just like selecting a record for viewing). Modify the
record by assigning the new values to the fields that need changes only. Finally, execute
the Update method statement to write the changes back to the database.

IDNum = Reqguest ("IDNum")
strSQL = "SELECT * FROM Names WHERE ID=" & IDNum
rs.Open strSQL, Conn, adOpenDynamiciy_adLockOptimistic

rs("SSN") = Request ("SSN")

rs ("FName") = Request ("FName") The SQL statement is selecting a

record in which the ID number
from the database matches the ID
88 MAGTF Staff Training Progra passed from the form. After

April 2004 selecting the record, the changes
are made to the selected record.




ASP 3.0 Tutorial Manual

rs("MI") = Request ("MI")

rs ("LName") = Request ("LName")
rs ("Rank") Request ("Rank™)
rs ("Unit") = Request ("Unit")
rs ("Phone") = Request ("Phone™)
rs.Update

3. Deleting Records

There are two easy ways to delete a record. Using the Recordset . Delete method
or using the DELETE statement in SQL. I will be discussing the Recordset.Delete
method to be consistent using the Recordset object. Like in the update part, you need to
position the current pointer to the record that you wish to update. Use a proper SQL
statement as well. Delete the record by using the Recordset. Delete method.

IDNum = Request ("IDNum")

strSQL =

rs.Open strSQL,

rs.Delete

"SELECT * FROM Names WHERE ID="

Conn, adOpenDynamic,

& IDNum

adLockOptimistic

MAGTF Staff Training Program
April 2004

89



ASP 3.0 Tutorial Manual

90 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

XV. Lab 5: Database Connection

In this Lab you will create a script to check a password and logon against the database
you created in Chapter XIII and based on the permission you assigned to yourself we will
extract information from the database and display it in the page.

Type the following code and save the file with an check password. asp extension
under the virtual directory you created or under the default virtual root directory
C:\Inetpub\wwwroot. Make sure that you point to the location of the database you
created previously.

check password.asp
<!-—#include file="includes/adovbs.inc"-->

<

o\°

Dim password, login

password = Request ("password")
login = Request ("login")

Dim dsn 'data source name & path i.e. the database
name and a path to it

Dim Conn '"Connection object

Dim rs 'recordset object

Dim strSQL 'structured query language statement

Set Conn = Server.CreateObject ("ADODB.Connection™)
Set rs = Server.CreateObject ("ADODB.Recordset™)

dsn="DBQ=" & Server.MapPatRh("UsersDb/Users.mdb" )& N@kemneyou
";Driver={Microsoft Access Driver N ; Vk\\\ point to the

location of

Conn.Open dsn your database
strSQL = "SELECT * FROM Names WHERE Password = '" &
password & "' and Login = '" & login & "'"

rs.Open strSQL, Conn

If RS.EOF = true Then
Conn.Close 'closes the database connection
set rs = Nothing 'sets the recordset equal to nothing

MAGTF Staff Training Program 91
April 2004



ASP 3.0 Tutorial Manual

set Conn= Nothing 'sets the connection object equal to

nothing
response.redirect "Login.asp"
End If
Session ("SSN") = RS ("SSN")
Session ("LName") = RS ("LName")
Session ("FName") = RS ("FName")
Session ("MI"™) = RS ("MI")
Session ("Rank") = RS ("Rank")
Session ("LoginPass") = True
Session ("Login") = RS ("Login")
Session ("Permissions") = RS ("Permissions")

Conn.Close 'closes the database connection

set rs = Nothing 'sets the recordset equal to nothing
set Conn= Nothing 'sets the connection object equal to
nothing

Permissions = Session ("Permissions")
If Permissions = "user" Then
response.redirect "Show Records.asp"
Elseif Permissions = "admin" Then
response.redirect "Show Records.asp"
Else
response.redirect "login.asp"
End If
%>

Show Records.asp

<!-- #include file="includes/adovbs.inc" -->

<HTML>

<%

Dim dsn 'data source name & path i.e. the database
name and a path to it

Dim Conn '"Connection object

Dim rs 'recordset object

Dim strSQL 'structured query language statement
Dim IDNum
dim selection

set Selection = Request.QueryString("Choice")
Set Conn = Server.CreateObject ("ADODB.Connection")
Set rs = Server.CreateObject ("ADODB.Recordset")

92 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

dsn="DBQ=" & Server.MapPath ("UsersDb/Users.mdb") &
";Driver={Microsoft Access Driver (*.mdb) };"

Conn.Open dsn
strSQL = "SELECT * FROM Names"

rs.Open strSQL, Conn, adOpenDynamic, adLockOptimistic,
adCmdText

%>

<table border=1 bgcolor=white width=655 bordercolor=Black
cellspacing=0 cellpadding=3>

<tr>

<td width="63"> Rank </td>

<td width="158"> First Name </td>

<th width="41"> MI </th>

<td width="113"> Last Name </td>

<td width="54"> Unit</td>

<th width="152"> Phone </th>

<

o\

Do While Not rs.EOF

o\°

>
<tr>

<td width="63"><%=rs ("Rank") %$></a> </td>
<td width="158"><%=rs ("FName") %> </td>

<td width="41"><%=rs ("MI")%$> </td>

<td width="113"><%=rs ("LName") %> </a> </td>
<td width="54"><%=rs ("Unit") %> </td>

<td width="152"><%=rs ("Phone") %> </td>

</tr>

<

o\

rs.MoveNext
Loop

Conn.Close 'closes the database connection

set rs= Nothing 'sets the recordset equal to nothing
set Conn = Nothing 'sets the connection object equal to
nothing

%>
</table>
</BODY>
</HTML>

MAGTF Staff Training Program
April 2004

93



ASP 3.0 Tutorial Manual

Make the following changes to the Login.asp file
<html>

<head>
<title>Login</title>
</head>

<body>
<hr size="4" color="#000080">

<form method="post" name="LoginForm"
action="check password.asp">
<table border="2" width="400">
<tr>
<td width="91"><b>Login:&nbsp;</b></td>
<td width="295"><input name="login"></td>
</tr>
<tr>
<td width="91"><b>Password:</b></td>
<td width="295"><input type="password"
name="password"></td>
</tr>
</table>
<p><input type="submit" value="Login" name="submit">
<input type="reset" value="Reset" name="Reset"></p>
</form>

<hr size="4" color="#000080">
</body>

</html>

94 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

3 http://ayalama/ASP/Show_Records.asp - Microsoft Internet Explorer provided by AT&T WorldNet Service

=& x|

File Edit W%iew Favorites Tools Help

Back ~ = - (D 7t | @ search  [Fovoritss  EMedia (% | By S 0] - &

Address Iﬁjhttp:HayaIamaJ‘ASP,l’Shnw_Recnrds.asp

Il @co |uns >

=
Home
Add User e ®
1st Battalion Web Page Delete Taee 5 MHI' mnes E
- X The Few. The Proud.,
Search User
|Alpha Roster |
|Rank  |FistName | MI |LastName Unit Phone
Capt  Miguel A Ayala MSTP 7037346001
|

]

Figure 30 Lab 5 Connecting to a Database and displaying results

’_ ’_ ’_ E Local intranet

MAGTF Staff Training Program
April 2004

95



ASP 3.0 Tutorial Manual

96 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

XVI. Putting it all together

A. Linking pages
Login.asp

e B =t Login/password fails

" »  check password.asp

/ Login/password successful search.asp

detail.asp Show records.asp e — ==

I T . o Mari
s e e e G GO = - e O3 e i @B - It Hattalion Web Prge J"‘_EEEM =
- ] 5 - ]
) . | [ 1

It Hattalion Web Prge i Marines = // It Hattalion Web Prge i Marines -
| [rru— A Ay 1 | (s Hamser 1

L L i e e R RTP R ) e

nar—

——

‘ Delete User.asp
Change Info.asp Add Kids.asp Add user.asp e e p—

il 013 e e e Guliie SR TR o P ) SRR T oy i I T =
Pt R T T o BT ] P
= f 2 - = = st Hattalion Web Pge g Marines gy
tat Battalion Web Page 25 Marines | P doe Eratialion Wal-Pnge G Marines gy, Results.aSD
i Pl g L ey __J It Hattalion Web Prge i Marines m \
: ) : |E= ] r——— T e e e e e
e - | —tr e — T — S——— ot attalion Web Prge e Marines gy
e - = =55
g =
— - =T o — Ty -
pra—
== o— vy - w——
f—== —t e —3 I— - 3

Change_info_action.asp Add kids_action.asp Add_user_action.asp Delete user action.asp

MAGTF Staff Training Program 97
April 2004



ASP 3.0 Tutorial Manual

98 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

XVII. Lab 6: Alpha Roster (Final Product)

Create an alpha roster web application with the following functionalities:

1.

Login Page: Ask the user for a logon id and a password. The page must be
able to process the information either on its own or pass it to another .asp file
to process the information. That pair needs to be check against information in
a database. The end product is to be able to check the logon id and password
provided by the user against a database.

Database Connectivity: The application must be able to have connectivity
with a database where all the information about the users reside.

Show Records: Display the appropriate information to the user, retrieving it
from the database.

Update Records: The application must be able to update existing
information from the database.

Add Records: The application must provide the functionality of adding new
users to the database, collecting at least the following information:

= SSN

= Rank

=  First Name
= MI

= Last Name
= Unit

= Phone Number

= Spouse Name

= Kids Name

= Kids Age

= Permission for the database (User or Admin)
= Password

= LogonlId

This functionality must be granted to an administrator

Delete Records: The application must provide the functionality of deleting
users. This functionality must be granted to an administrator.

Sort Records: When displaying the records, the functionality of sorting them
should be available. The application should sort the records by:

= Rank

MAGTF Staff Training Program
April 2004

99



ASP 3.0 Tutorial Manual

= First Name
= Last Name
= Unit

8. Search Records: The application should have the functionality of searching
a record under certain parameters. At least should provide the functionality of
searching records by:

= [ast Name
=  First Name

The application should return all the records that matches the criteria given by
the user.

100 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Appendix A. Final Product Description

Final product:
Upon completion of the class the student should be able to build the following:

You have an alpha roster database with all the members of the Battalion. The

information in the database is composed of:
e Rank
e First Name

MI

Last Name

SSN

Unit

Phone

Login

Password

Permission

Spouse Name

Children Name

You should be able to create a web application that reads all the information from the
database and presents it to you. The application must have a login page that when the
user types the userid and password it validates and authenticate the user by looking into
the database for that user. Access to the rest of the pages is allowed if the user is found,
otherwise redirect back to the login page. Based on the user’s permission (user or admin)
allow the access to different functionalities of the home page. In the home page the user
should have the functionalities of searching for an individual in the alpha roster and get
the details of that user (for a user permission). For an admin permission the user can add,
delete, modify as well as search for a user.

1st Battalion Web Page @mf!‘!aﬂﬂes

The Proud,

| Login

Login:
Password:

Login | Reset |

Figure A- 1 Login Page

MAGTF Staff Training Program
April 2004

101



ASP 3.0 Tutorial Manual

Home

Add User -

1st Battalion Web Page N @ Marines E

N The Few. The Proud.

Search User
|Alpha Roster
|Rank  [FirstName | MI [LastName Unit Phone
Clapt Miguel A Ayala MSTP 7037846001
Figure A- 2 Alpha Roster
Home
Add Teer ) [
Ist Battalion Web Page Delete Tser &?‘? MEI' mnes E
- b The Few, The Provd,
Search User
|Personal Information for Capt Miguel A Ayala
| SSN | Ranl | First Name | MI | Last Name | Uit ‘ Phone Spouse Spouse MI |
123456789 Clapt Miguel A Ayala MSTP 7037846001 Draisy
Family Information
Kids
First Name Age
Lz 6
Lourdes 0z
Ed
AddaEad
Delete it
Figure A- 3 Detail Information
102 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

oearch User

|Change Information for Capt Miguel A Ayala

SEN: 123456783

First Name:

Miguel T

—

Last Name:

Awala

Eank

Capt

Unit, METP Phone

|?03?84BDD1

Logon

ayalama

Password

ayalama

Family Information

Spouse

| First Name |Da|5y

|

Kads

Information for Kid # 1

First Name

ILuls

Age

—

Information for Kid # 2

First Matme

ILDurdes

Age

e

Make Changes

Figure A- 4 Change Information

Ist Battalion Web Page

Home
Add User
Delete User

Search User

- 5}, L
@' Marines ppy

|Informati0n updated on Capt Miguel A Ayala

‘ 88N | Rank ‘ First Name ‘ MI | Last Name | Unit | Fhone Spouse SpnuseM]|
123456739 Capt Iliguel A Ayala METP 7037346001 Datey
Family Information
Kids
First Name Age
Luis &
Lourdes 0.2

o

Figure A- 5 Updated information

MAGTF Staff Training Program
April 2004

103



ASP 3.0 Tutorial Manual

Home

Add Ueer

Ist Battalion Web Page S »@‘? Marines

X The Few. The Proud.
Search User

o4

| Search

Last MName: |
First Matne: |

Search

Figure A- 6 Search

Home

Add User o

1st Battalion Web Page N g\? Marines

X The Few. The Proud,

<]

Search User
|Delete user Capt Mignel A Ayala?
| S8 | Rank | First Name | T | Last Name ‘ Unit | Phone Spouse Spouse MI ‘
123456785 Capt Iufiguel A Avala MSTP 7037546001 Daisy

Delete | Are you sure you want to delete this record?  Tse your back button to cancel the operation! 11

Figure A- 7 Delete User

Home

Add User

1Ist Battalion Web Page — @ Marines

N The Few, The Proud.

Search TTser
|Add Kids far Capt Migunel A Ayala
Information for Kid # 1
First Name I
bge I
Subrnit | Reset |
Figure A- 8 Add Kid
104 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

1st Battalion Web Page

Home
Add Teer
Delete User

Search User

- 5};. o
@Marmes

N The Few. The Provd.

[ -4

| Search Results

|Rank  |FistName  [MI  |LostName  |Unit Phone
Capt  Migpel A Agda MSTP 7037346001

Figure A- 9 Search Results

MAGTF Staff Training Program

April 2004

105



ASP 3.0 Tutorial Manual

106 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Appendix B. VBScript Reference

VBSCRIPT REFERENCE

This section covers the VBScript keywords, operators, functions, and control
structures.

Statements and Keywords

Dim is used to declare variables. VBScript variables are variants, which means
that they do not have to have a fixed data type.

Const Is used to declare constants, which are like variables except that they
cannot be changed in the script.

Option Explicit is put at the top of a page to force explicit declaration of
all variables.

Operators
[n order of precedence, this is a list of operators supported in VBScript.
= Anything in parentheses.
= Exponentiation ()
= Negation (-)
= Multiplication, Division (*, /)
= [nteger Division ()
= Modulus (Mod)
= Addition, Subtraction (+,-)
= String Concatenation (&)
= Comparison Operators (=, <>, <, >, <=, >==)
= Not
= And
= Or
= Xor
= Eqv
= [mp

MAGTF Staff Training Program 107
April 2004



ASP 3.0 Tutorial Manual

VBScript Functions
This will provide you with a quick look at the more important VBScript
functions. They include functions for type checking, typecasting, formatting,

math, date manipulation, string manipulation, and more.

Type Checking Functions

These functions allow you to determine the data subtype of a variable or
expression.

® VarType (expression) returns an integer code that corresponds to the
data type.

® TypelName (expression) rcturns a string with the name of the data type
rather than a code.

®* IgNumeric (expression) returns a Boolean value of True if the
expression is numeric data, and False otherwise.

= IsArray (expression) returns a Boolean value of True if the expression
is an array, and False otherwise.

= IsDate(expression) returns a Boolean value of True if the expression is
date/time data, and Fa1se otherwise.

= IsEmpty (expression) returns a Boolean value of True if the expression
is an empty value (uninitialized variable), and False otherwise.

= IsNull (expreasion) rcturns a Boolean value of True if the expression
contains no valid data, and False otherwise.

® IsObject (expression) returns a Boolean value of True if the
expression is an object, and False otherwise.

Value Constant Data Type

0 vbEmpty Empty (This is the type for a variable that
has not been used vyet. In other words.
Empty is the default datatype.)

1 vbNull Null (Ne valid data)

2 vbhinteger Integer

3 vbLong Long

4 vbSingle Single

5 vbDouble Double

6 vhCurrency Currency

7 vbhDate Date

8 vbString String

108 MAGTF Staff Training Program

April 2004



ASP 3.0 Tutorial Manual

9 vbObject Object

10 vbError Error

11 vbBoolean Boolean

12 vbVariant Variant (used with vbArray)

13 vbDataObject  Data Access Object

14 vhDecimal Decimal

17 vhByte Byte

8192 vbArray Array (VBScript uses 8192 as a base for
arrays and adds the code for the data type
to indicate an array. 8204 indicates a
variant array, the only real kind of array in
VBScript.)

Typecasting Functions

Typecasting allows you to convert between data subtypes.

CInt (expression) casts expression to an integer. If expression 1s a
floating-point value or a currency value, it is rounded. If it is a string that

looks like a number, it 1s turned into that number and then rounded if

necessary. If it 1s a Boolean value of True, it becomes -1. False becomes 0.
It also must be within the range that an integer can store.

CByte (expression) casts expression to a byte value provided that
expression falls between 0 and 255. expression should be numeric or
something that can be cast to a number.

CDbl (expression) casts expression to a double, expression should be
numeric or something that can be cast to a number.

CSng (expression) casts expression to a single. It works like CDbI(), but
must fall within the range represented by a single.

CBocl (expression) casts expression to a Boolean value. If expression is
zero, the result is False. Otherwise, the result is True. Expression should be
numeric or something that can be cast to a number.

CCur (expression) casts expression to a currency value, expression
should be numeric or something that can be cast to a number.

CDate (expression) casts expression to a date value, expression should be
numeric or something that can be cast to a number, or a string of a
commonly used date format. DateValue(expression) or TimeValue
(expression) can also be used for this.

CStr (expression) casts expression to a string, expression can be any
kind of data.

MAGTF Staff Training Program
April 2004

109



ASP 3.0 Tutorial Manual

Formatting Functions

FormatDateTime (expression, format) is used to format the date/time data
in expression. format is an optional argument that should be one of the
following:

= vbGeneralDate—Display date, if present, as short date. Display time, if
present, as long time. Value 1s 0. This is the default setting if no format is
specified.

® vblLongDate—Display date using the server's long date format. Value is 1.

= vbshortDate—Display date using the server's short date format. Value is

2

= vbLongTime—Display time using the server's long time format. Value 1s 3.
= vbsShortTime—Display time using the server's short time format. Value is
4.

FormatCurrency (value, numdigits, leadingzero, negparen,

delimiter) is used to format the monetary value specified by value.

® numdigits specifies the number of digits after the decimal place to
display.
-1 indicates to use the system default.

= Tristate options have three possible values. If the value is -2, it means
use the system default. If it is -1, it means turn on the option. If it is 0, turn
off the option.

® leadingzero is a Tristate option indicating whether to include leading
zeroes on values less than [.

= negparen is a Tristate option indicating whether to enclose negative values
in parentheses.

= delimeter is a Tristate option indicating whether to use the delimiter
specified in the computer's settings to group digits.

FormatNumber is used to format numerical values. It is almost exactly like
FormatCurrency, only it does not display a dollar sign.

FormatPercent works like the previous two. The options are the same, but it
turns the value it is given into a percentage.

Math Functions

" Ahs (number) returns the absolute value of number.

= Atn(number) returns the arctangent, in radians, of number.

= Cos (number) returns the cosine of number, number should be in radians.

® Exp (number) returns e (approx. 2.71828) raised to the power number.

= Fix(number) returns the integer portion of number. If number is negative.
Fix returns the first integer greater than or equal to number.

= Hex (number) converts number from base 10 to a hexadecimal string.

= Int(number) returns the integer portion of number. If number is negative,
Int returns the first integer less than or equal to number.

® Log (number) returns the natural logarithm of number.

110 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Cct (number) converts number from base 10 to an octal string.

Rnd (number) returns a random number less than one and greater than or
equal to zero.

[f the argument number is less than 0, the same random number is always
returned, using number as a seed. If number is greater than zero, or not
provided, Rnd generates the next random number in the sequence. If
number is 0, Rnd returns the most recently generated number.

Randomize initializes the random number generator.

Round (number) returns number rounded to an integer.

Round (number, dec) returns number rounded to dec decimal places.

Sgn (number) returns 1 if number is greater than zero, 0 if number equals
zero, and -1 if number is less than zero.

gin (number) returns the sine of number, number should be in radians.

sqr (number) returns the square root of number, number must be positive.
Tan (number) returns the tangent of number, number should be in radians.

Date Functions

Date returns the current date on the server.

Time returns the current time on the server.

Wow returns the current date and time on the server.

Dateidd (interval, number, date) is used to add to the date Spccif‘icd
by date. Interval is a string that represents whether you want to add days,
months, vears, and so on. Number indicates the number of intervals vou
want to add: that is, the number of days, months, years, and so on.
DateDiff (interval, datel, date2, firstDOW, firstWOY) is used to
find the time between two dates. Datepift returns the number of intervals
clapsed between datel and datez. The optional integer firstDOW
specifies what day of the week to treat as the first. The optional firstwoy
specifies which week of the year to treat as the first.

DateSerial (year, month, day) takes the integers year, month, and day
and puts them together into a date value. They may be negative.
TimeSerial (hour, minute, second) is similar to Dateserial. Timer
returns the number of seconds elapsed since midnight.

DatePart (interval, datetime, firstDOW, firstwoy) allows youto
retrieve the part of datetime specified by interwval. The optional integer
firstDow specifies what day of the week to treat as the first. The optional
firstwWoy specifies which week of the year to treat as the first.

Date Constants

Value Meaning
vyyy" Year

"q" Quarter
"m" Month

"y Day of vear
"D Day

MAGTF Staff Training Program
April 2004

111



ASP 3.0 Tutorial Manual

"w Weekday
"ww" Week of year
"h" Hour

n" Minute

" Second

Day of the Week Constants

0 vhUseSystem National Language Support APl Setting

I vbSunday Sunday (default

2 vbMonday Monday

3 vbTuesday Tuesday

4 vbWednesday Wednesday

5 vbThursday Thursday

§ vbFriday Friday

7 vhSaturday Saturday
vbUseSystem National Language Support APl Setting
vbFirstlan| Week of January |
vbFirstFourDays First week with four days of new yea
vbFirstFullWeek First full week

Year(date) returns the year portion from date as a number.
Month (date) returns the month portion from date as a number.
MonthWame (date) returns the month portion from date.

Day (date) returns the day portion from date as a number.
Weekday (date) returns the day of the week of date as a number.
Hour (time) returns the hour portion from time.

Minute (time) returns the minute portion from time.

Second (time) returns the second portion from time.

String Functions

UCase (string) returns string with all its lowercase letters converted to
uppercase letters.

LCase (string) returns string with all its uppercase letters converted to
lowercase letters.

LTrim(string) removes all the spaces from the left side of string.
RTrim(string) removes all the spaces from the right side of string.
Trim(string) removes spaces from both the left and the right sides.
Space{number) returns a string consisting of number spaces.

String (number, character) returns a string consisting of character
repeated number times.

Len(string) returns the number of characters in string.

Len (variable) returns the number of bytes required by variable.

LenB (string) returns the number of bytes required to store string.
StrReverse (string) returns string with the characters in reverse order.

112

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

StrComp(stringl, string2, comparetype) Is used to perform string
comparisons. If comparetype is zero or omitted, the two strings are
compared as if uppercase letters come before lowercase letters. If
comparetype is one, the two strings are compared as if upper and
lowercase letters are the same. strcomp returns -1 if etringl is less than
string2. It returns 0 if they are the same, and 1 if stringl is greater than
string2.

Right (string, number) returns the number rightmost characters of string.
RightB(string,numcer) works like Right, but number is taken to be a
number of bytes rather than characters.

Left (string,number), as you may guess, returns the number leftmost
characters of string.

LeftB (string, number) works like Left, but number is taken to be a
number of bytes rather than characters.

Mid(string,start,length) returns length characters from string,
starting at position start. When length is greater than the number of
characters left in the string, the rest of the string 1s returned. If length is not
specified, the rest of the string starting at the specified starting position is
returned.

MidB (string, start,length) works like mia, but start and length are
both taken to be byte numbers rather than character numbers.

InStr (start, stringi, strlng2, comparetype) 1s used to check if and
where string2 occurs within stringl. start is an optional argument that
specifies where in stringl to start looking for string2. comparetype is
an optional argument that specifies which type of comparison to perform.
If comparetype is 0, a binary comparison is performed, and uppercase
letters are distinct from lowercase letters. If comparetype i1s 1, a textual
comparison is performed, and uppercase and lowercase letters are the
same. InStr returns zero if stringl is empty ("), if string2 is not found
in stringl, or if start is greater than the length of stringz. It returns
mull if either string 1s ¥Wull, It returns start if string2 is empty. If
string2 is successfully found in stringi, it returns the starting position
where it is first found.

InstrB works like Instr except that the start position and return value
are byte positions, not character positions.
InsStrRev(stringl,string2,start,compare type) starts looking for a
match at the right side of the string rather than the left side. start is by
default -1, which means to start at the end of the string.

Replaceistring, find, replace, start, count, comparatype) 1s used to
replace occurrences of find with replace in string. start, count, and
comparetype are optional, but if you want to use one, yvou must use the
ones that come before it. start indicates where the resulting string will
start and where to start searching for find. It defaults to 1. count indicates
how many times to perform the replacement. By default, count is -1,
which means to replace every occurrence. If comparetyvpe is (1, a binary
comparison is performed, and uppercase letters are distinet from lowercase
letters. [f comparetype i1s 1, a textual comparison is performed, and
uppercase and lowercase letters are the same.

MAGTF Staff Training Program
April 2004

113



ASP 3.0 Tutorial Manual

Filter (arrStrings, SearchFor,include, comparetype) searches an
array of strings, arrStrings, and returns a subset of the array, include is
a Boolean value. If include is True, Filter searches through all the
strings in arrStrings and returns an array containing the strings that
contain SearchFor. If include is False, Filter returns an array of the
strings that do not contain SearchFor. include is optional and defaults to
True. comparetype works the same as in the other string functions we
have discussed. If you want to use comparetype, vou must use include.
Split (expression,delimiter,count,comparetype) takes a :\'tl'ing
and splits it into an array of strings. expression is the string to be split up.
If expression is zero length. split returns an array of no elements,
delimiter is a string that indicates what is used to separate the sub-strings
in expression. This 1s optional: by default the delimiter 1s the space. If
delimiter is zero length ("), an array of one element consisting of the
whole string is returned, count is used to specify a maximum number of
sub-strings to be created. The default for count is -1, which means no
limit. If comparetype is 0, a binary comparison is performed, and
uppercase letters are distinet from lowercase letters. If comparetype is 1. a
textual comparison is performed, and uppercase and lowercase letters are
the same. comparetype is only useful when the delimiter vou have chosen
is a letter.

Join(stringarray,delimiter) does just the opposite of split. It takes
an array of strings and joins them into one string, using delimiter to
separate them. delimiter is optional: the space is the default.

Other functions

LBound (array) returns the smallest valid index for array.

UBound (array) returns the largest valid index for array.

Asc (string) returns the ANSI character code for the first character of
string.

Chr (integer) returns a string consisting of the character that matches the
ANSI character code specified by integer.

Array (valuel, valuez, ..., valueN) returns an array containing the
specified values. This is an alternative to assighing the values to array
elements one at a time.

Control Structures

Control structures allow vou to control the flow of execution of your scripts.

You can specify that some code should be executed only under certain

circumstances, using conditional structures. You can specify that some code

should be executed repeatedly, using looping structures. Lastly, you can
specify that code from somewhere else in the script should be executed using
branching controls.

114

MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Conditional Structures

The If...Then...Else construct allows yvou to choose which block of code to

execute based on a condition or series of conditions.

<%

If conditionl Then
codeblockl

Elself condltion2 Then
codeblock2

Else
codeblock3

End It

%=

If conditionl is true, codeblockl is executed. If it is false, and condition2 is
true, codeblock 2 is executed. [f condition] and condition2 are both false,
cadeblock3 executes. An If-Then construct may have zero or more Elself

statements, and zero or one Else statements.

In place of some really complex If ... Then constructs, you can use a Select
Case statement. It takes the following form:

Select Case variable
Case cholcel
codeblockl
Case choilcel
codeblockz
Case cholcen
codeblockn
Case default
default code block
End Select

This compares the value of variable with choicel, choice2, and so on. If it
finds a match, it executes the code associated with that choice. If it does not, it
executes the default code.

Looping Structures

Looping structures allow you to execute the same block of code repeatedly.
The number of times it executes may be fixed or may be based on one or
more conditions.

The For...Next looping structure takes the following form:

For counter = start to stop
codeblock
Next

cadeblock is executed with counter having the value start, then with counter

having the value start+1, then start+2, and so forth through the value stop.

MAGTF Staff Training Program
April 2004

115



ASP 3.0 Tutorial Manual

Optionally. you may specify a different value to increment counter by. In this
case the form looks like this:

For counter = start to stop Step stepvalue
codeblock
Next

Now counter will take the values siart tstepvalue, start-tstepvalue tstepvalue,
and so forth. Notice that if stepvalue is negative, stop should be less than start.

The For Each...Next looping structure takes the following form:

For Each item In Set
codeblock
Next

codeblock is executed with item taking the value of each member of Set. Set
should be an array or a collection.

The Do While-Loop looping structure has the following form:

Do While booleanValue
code block
Loop

codeblock is executed as long as booleanValue is True. If it is False to begin
with, the loop is not executed at all.

The While...Wend looping structure has the following form:

While booleanValue
codeblock
Wend

codeblock is executed as long as booleanValue is True. If it is False to begin
with, the loop is not executed at all.

The Do-Loop While looping structure has the following form:

Do
code block
Loop While booleanValue

codeblock is executed as long as booleanValue is True. The loop is executed
at least once no matter what.

116 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

The Do Until-Loop looping structure has the following form:

Do Untll booleanValue
codeblock
Loop

code hlock is executed as long as booleanValue is false. If it is true to begin
with, the loop is not executed at all.

The Do...Loop Until looping structure has the following form:

Do
code block
Loop Until booleanValue

code block 1s executed as long as booleanValue is false. The loop 1s executed
at least once no matter what.

Branching Structures

Branching structures allow you to jump from one position in the code to
another. A subroutine does not return a value. It simply executes. Subroutines
look like this:

Sub name (argumentlist)
code block
End Sub

Functions do return values and have the following form:

Function name (argumentlist)
code block
name = expression

End Function

MAGTF Staff Training Program
April 2004

117



ASP 3.0 Tutorial Manual

118 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Appendix C. HTML Tags

Reference HTML Cheat sheet

<html></html>
Creates an HTML document

<head></head>
Sets off the title and other information that isn't displayed on the Web page itself

<body></body>

Sets off the visible portion of the document

Header Tags

<title></title>
Puts the name of the document in the title bar

Body Attributes

<body bgcolor=?>
Sets the background color, using name or hex value

<body text=7?>
Sets the text color, using name or hex value

<body link=?>
Sets the color of links, using name or hex value

<body vlink=?>
Sets the color of followed links, using name or hex value

<body alink=?>
Sets the color of links on click

Text Tags

<pre></pre>
Creates preformatted text

<hl></hl>

Creates the largest headline

<h6></h6>

Creates the smallest headline

<b></b>
Creates bold text

MAGTF Staff Training Program
April 2004

119



ASP 3.0 Tutorial Manual

<p></i>
Creates italic text

<tt></tt>

Creates teletype, or typewriter-style text

<cite></cite>
Creates a citation, usually italic

<em></em>
Emphasizes a word (with italic or bold)

<strong></strong>
Emphasizes a word (with italic or bold)

<font size=?></font>
Sets size of font, from 1 to 7)

<font color=?></font>
Sets font color, using name or hex value

<a href="URL"></a>
Creates a hyperlink

<a href="mailto:EMAIL"></a>
Creates a mailto link

<a name="NAME"></a>
Creates a target location within a document

<a href="#NAME"></a>

Links to that target location from elsewhere in the document

<p></p>
Creates a new paragraph

<p align=?>
Aligns a paragraph to the left, right, or center

<br>
Inserts a line break

<blockquote>

</blockquote>
Indents text from both sides

<dI></dI>
Creates a definition list

<dt>

120 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Precedes each definition term

<dd>

Precedes each definition

<ol></ol>
Creates a numbered list

<li></li>
Precedes each list item, and adds a number

<ul></ul>
Creates a bulleted list

<div align=?>
A generic tag used to format large blocks of HTML, also used for stylesheets

Graphical Elements

<img src="name">
Adds an image

<img src="name" align=?>
Aligns an image: left, right, center; bottom, top, middle

<img src="name" border=?>
Sets size of border around an image

<hr>
Inserts a horizontal rule

<hr size=?>
Sets size (height) of rule

<hr width=?>
Sets width of rule, in percentage or absolute value

<hr noshade>
Creates a rule without a shadow

fabes

<table></table>
Creates a table

<tr></tr>
Sets off each row in a table

<td></td>

Sets off each cell in a row

<th></th>

Sets off the table header (a normal cell with bold, centered text)

MAGTF Staff Training Program
April 2004

121



ASP 3.0 Tutorial Manual

Table Attributes

<table border=#>
Sets width of border around table cells

<table cellspacing=#>
Sets amount of space between table cells

<table cellpadding=#>

Sets amount of space between a cell's border and its contents

<table width=# or %>
Sets width of table — in pixels or as a percentage of document width

<tr align=?> or <td align=?>
Sets alignment for cell(s) (left, center, or right)

<tr valign=?> or <td valign=7?>
Sets vertical alignment for cell(s) (top, middle, or bottom)

<td colspan=#>
Sets number of columns a cell should span

<td rowspan=#>
Sets number of rows a cell should span (default=1)

<td nowrap>
Prevents the lines within a cell from being broken to fit

<frameset></frameset>
Replaces the <body> tag in a frames document; can also be nested in other framesets

<frameset rows="value,value>
Defines the rows within a frameset, using number in pixels, or percentage of w idth

<frameset cols="value,value™>
Defines the columns within a frameset, using number in pixels, or percentage of width

<frame>
Defines a single frame — or region — within a frameset

<noframes></noframes>
Defines what will appear on browsers that don't support frames

Frames Attributes

<frame src="URL">
Specifies which HTML document should be displayed

<frame name="name">
Names the frame, or region, so it may be targeted by other frames

<frame marginwidth=#>

122 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Defines the left and right margins for the frame; must be equal to or greater than 1

<frame marginheight=#>
Defines the top and bottom margins for the frame; must be equal to or greater than 1

<frame scrolling=VALUE>

Sets whether the frame has a scrollbar; value may equal "yes,
ordinary documents, is auto.

non

no," or "auto." The default, as in

<frame noresize>
Prevents the user from resizing a frame

For functional forms, you'll have to run a CGI script. The HTML just creates the appearance of a
form.

<form></form>
Creates all forms

<select multiple name="NAME" size=?></select>
Creates a scrolling menu. Size sets the number of menu items visible before you need to scroll.

<option>
Sets off each menu item

<select name="NAME"></select>
Creates a pulldown menu

<option>
Sets off each menu item

<textarea name="NAME" cols=40 rows=8></textarea>
Creates a text box area. Columns set the width; rows set the height.

<input type="checkbox" name="NAME">

Creates a checkbox. Text follows tag.

<input type="radio" hame="NAME" value="x">
Creates a radio button. Text follows tag

<input type=text name="foo" size=20>
Creates a one-line text area. Size sets length, in characters.

<input type="submit" value="NAME">

Creates a Submit button

<input type="image" border=0 name="NAME" src="name.gif">
Creates a Submit button using an image

<input type="reset">
Creates a Reset button

MAGTF Staff Training Program
April 2004

123



ASP 3.0 Tutorial Manual

124 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Appendix D. ASP Objects

Response Object

The ASP Response object is used to send output to the user from the server. Its

collections, properties,

and methods are described below:

Collections

Collection Description

Cookies Sets a cookie value. If the cookie does not exist, it

will be created, and take the value that is specified

Properties

Property Description

Buffer Specifies whether to buffer the page output or not

CacheControl Sets whether a proxy server can cache the output
generated by ASP or not

Charset Appends the name of a character-set to the
content-type header in the Response object

ContentType Sets the HTTP content type for the Response object

Expires Sets how long (in minutes) a page will be cached on

a browser before it expires

ExpiresAbsolute

Sets a date and time when a page cached on a
browser will expire

IsClientConnected

Indicates if the client has disconnected from the

Server

Pics Appends a value to the PICS label response header

Status Specifies the value of the status line returned by
the server

Methods

Method Description

AddHeader Adds a new HTTP header and a value to the HTTP
response

AppendTolog Adds a string to the end of the server log entry

BinaryWrite Writes data directly to the output without any
character conversion

MAGTF Staff Training Program
April 2004

125


http://www.w3schools.com/asp/coll_cookies.asp
http://www.w3schools.com/asp/prop_buffer.asp
http://www.w3schools.com/asp/prop_cachecontrol.asp
http://www.w3schools.com/asp/prop_charset.asp
http://www.w3schools.com/asp/prop_contenttype.asp
http://www.w3schools.com/asp/prop_expires.asp
http://www.w3schools.com/asp/prop_expiresabsolute.asp
http://www.w3schools.com/asp/prop_isclientconnected.asp
http://www.w3schools.com/asp/prop_pics.asp
http://www.w3schools.com/asp/prop_status.asp
http://www.w3schools.com/asp/met_addheader.asp
http://www.w3schools.com/asp/met_appendtolog.asp
http://www.w3schools.com/asp/met_binarywrite.asp

ASP 3.0 Tutorial Manual

Clear Clears any buffered HTML output

End Stops processing a script, and returns the current
result

Flush Sends buffered HTML output immediately

Redirect Redirects the user to a different URL

Write Writes a specified string to the output

126

MAGTF Staff Training Program
April 2004



http://www.w3schools.com/asp/met_clear.asp
http://www.w3schools.com/asp/met_end.asp
http://www.w3schools.com/asp/met_flush.asp
http://www.w3schools.com/asp/met_redirect.asp
http://www.w3schools.com/asp/met_response_write.asp

ASP 3.0 Tutorial Manual

Request Object

When a browser asks for a page from a server, it is called a request. The ASP Request
object is used to get information from the user. Its collections, properties, and methods

are described below:

Collections

Collection

Description

ClientCertificate

Contains all the field values stored in the client
certificate

Cookies

Contains all the cookie values sent in a HTTP request

Form

Contains all the form (input) values from a form that
uses the post method

QueryString

Contains all the variable values in a HTTP query
string

ServerVariables

Contains all the server variable values

Properties

Property Description

TotalBytes Returns the total number of bytes the client sent in
the body of the request

Methods

Method Description

BinaryRead Retrieves the data sent to the server from the client

as part of a post request and stores it in a safe array

MAGTF Staff Training Program
April 2004

127


http://www.w3schools.com/asp/coll_cookies.asp
http://www.w3schools.com/asp/coll_form.asp
http://www.w3schools.com/asp/coll_querystring.asp
http://www.w3schools.com/asp/coll_servervariables.asp
http://www.w3schools.com/asp/prop_totalbytes.asp
http://www.w3schools.com/asp/met_binaryread.asp

ASP 3.0 Tutorial Manual

Application Object
An application on the Web may be a group of ASP files. The ASP files work together to
perform some purpose. The Application object in ASP is used to tie these files together.
The Application object is used to store and access variables from any page, just like the
Session object. The difference is that ALL users share one Application object, while with
Sessions there is one Session object for EACH user.
The Application object should hold information that will be used by many pages in the
application (like database connection information). This means that you can access the
information from any page. It also means that you can change the information in one
place and the changes will automatically be reflected on all pages.
The Application object's collections, methods, and events are described below:

Collections

Collection Description

Contents Contains all the items appended to the
application through a script command

StaticObjects Contains all the objects appended to the
application with the HTML <object> tag

Methods

Method Description

Contents.Remove Deletes an item from the Contents collection

Contents.RemoveAll() | Deletes all items from the Contents collection

Lock Prevents other users from modifying the
variables in the Application object

Unlock Enables other users to modify the variables in
the Application object (after it has been locked
using the Lock method)

Events

Event Description

Application OnEnd |Occurs when all user sessions are over, and the
application ends

Application OnStart Occurs before the first new session is created
(when the Application object is first referenced)

128 MAGTF Staff Training Program
April 2004


http://www.w3schools.com/asp/coll_contents.asp
http://www.w3schools.com/asp/coll_staticobjects.asp
http://www.w3schools.com/asp/met_contents_remove.asp
http://www.w3schools.com/asp/met_contents_removeall.asp
http://www.w3schools.com/asp/met_lock_unlock.asp
http://www.w3schools.com/asp/met_lock_unlock.asp
http://www.w3schools.com/asp/ev_app_onend_onstart.asp
http://www.w3schools.com/asp/ev_app_onend_onstart.asp

ASP 3.0 Tutorial Manual

Session Object

When you are working with an application, you open it, do some changes and then you
close it. This is much like a Session. The computer knows who you are. It knows when
you start the application and when you end. But on the internet there is one problem: the
web server does not know who you are and what you do because the HTTP address

doesn't maintain state.

ASP solves this problem by creating a unique cookie for each user. The cookie is sent to
the client and it contains information that identifies the user. This interface is called the

Session object.

The Session object is used to store information about, or change settings for a user
session. Variables stored in the Session object hold information about one single user,
and are available to all pages in one application. Common information stored in session
variables are name, id, and preferences. The server creates a new Session object for each
new user, and destroys the Session object when the session expires.

The Session object's collections, properties, methods, and events are described below:

Collections

Collection Description

Contents Contains all the items appended to the session
through a script command

StaticObjects Contains all the objects appended to the
session with the HTML <object> tag

Properties

Property Description

CodePage Specifies the character set that will be used
when displaying dynamic content

LCID Sets or returns an integer that specifies a
location or region. Contents like date, time, and
currency will be displayed according to that
location or region

SessionID Returns a unique id for each user. The unique
id is generated by the server

Timeout Sets or returns the timeout period (in minutes)
for the Session object in this application

Methods

Method Description

Abandon Destroys a user session

Contents.Remove

Deletes an item from the Contents collection

MAGTF Staff Training Program
April 2004

129


http://www.w3schools.com/asp/coll_contents.asp
http://www.w3schools.com/asp/coll_staticobjects.asp
http://www.w3schools.com/asp/prop_codepage.asp
http://www.w3schools.com/asp/prop_lcid.asp
http://www.w3schools.com/asp/prop_sessionid.asp
http://www.w3schools.com/asp/prop_timeout.asp
http://www.w3schools.com/asp/met_abandon.asp
http://www.w3schools.com/asp/met_contents_remove.asp

ASP 3.0 Tutorial Manual

Contents.RemoveAll()

Deletes all items from the Contents collection

Events

Event

Description

Session OnEnd

Occurs when a session ends

Session OnStart

Occurs when a session starts

130

MAGTF Staff Training Program
April 2004



http://www.w3schools.com/asp/met_contents_removeall.asp
http://www.w3schools.com/asp/ev_sess_onend_onstart.asp
http://www.w3schools.com/asp/ev_sess_onend_onstart.asp

ASP 3.0 Tutorial Manual

Server Object

The ASP Server object is used to access properties and methods on the server. Its
properties and methods are described below:

Properties

Property

Description

ScriptTimeout

Sets or returns the maximum number of seconds a
script can run before it is terminated

Methods

Method Description

CreateObject Creates an instance of an object

Execute Executes an ASP file from inside another ASP file

GetLastError() Returns an ASPError object that describes the error
condition that occurred

HTMLEncode Applies HTML encoding to a specified string

MapPath Maps a specified path to a physical path

Transfer Sends (transfers) all the information created in one
ASP file to a second ASP file

URLEncode Applies URL encoding rules to a specified string

MAGTF Staff Training Program
April 2004

131


http://www.w3schools.com/asp/prop_scripttimeout.asp
http://www.w3schools.com/asp/met_server_createobject.asp
http://www.w3schools.com/asp/met_execute.asp
http://www.w3schools.com/asp/met_getlasterror.asp
http://www.w3schools.com/asp/met_htmlencode.asp
http://www.w3schools.com/asp/met_mappath.asp
http://www.w3schools.com/asp/met_transfer.asp
http://www.w3schools.com/asp/met_urlencode.asp

ASP 3.0 Tutorial Manual

The ASPError Object
The ASPError object is implemented in ASP 3.0 and it is only available in IISS5.
The ASP Error object is used to display detailed information of any error that occurs in
scripts in an ASP page. The ASPError object is created when Server.GetLastError is
called, so the error information can only be accessed by using the Server.GetLastError
method.

Example

<html>

<body>

<%
"The following line creates an error

dim i for i=1 to 1 next

'Call the GetLastError() method to trap the error
dim objerr

set objerr=Server.GetLastError()

"The variable objerr now contains the ASPError object
response.write("ASP Code=" & objerr. ASPCode)
response.write("<br />")

response.write("Number=" & objerr.Number)
response.write("<br />")

response.write("Source=" & objerr.Source)

response.write("Filename=" & objerr.File)

(

(

(
response.write("<br />")
(
response.write("<br />")
response.write("LineNumber=" & objerr.Line)
%>

</body>

</html>

The ASPError object's properties are described below (all properties are read-only):
Note: The properties below can only be accessed through the Server.GetLastError()
method.

132 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Properties
Property Description
ASPCode Returns an error code generated by IIS

ASPDescription

Returns a detailed description of the error (if the
error is ASP-related)

Category Returns the source of the error (was the error
generated by ASP? By a scripting language? By an
object?)

Column Returns the column position within the file that
generated the error

Description Returns a short description of the error

File Returns the name of the ASP file that generated the
error

Line Returns the line number where the error was
detected

Number Returns the standard COM error code for the error

Source Returns the actual source code of the line where the error

occurred

MAGTF Staff Training Program
April 2004

133


http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp
http://www.w3schools.com/asp/prop_asperrorobject.asp

ASP 3.0 Tutorial Manual

134 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

Appendix E. Helpful Websites

Some helpful web sites for tutorials and information:

http://asp-dev.aspin.com/home/tutorial
http://www.free-webmaster-tools.com/programming/asp/code.html
http://www.asptutorial.info/

http://www.aspin.com/home/tutorial

http://devguru.aspin.com/
http://www.techiwarehouse.com/ASP/ASP_Tutorial.html
http://www.maconstate.edu/msconline/tutorials/

MAGTF Staff Training Program 135
April 2004


http://asp-dev.aspin.com/home/tutorial
http://www.free-webmaster-tools.com/programming/asp/code.html
http://www.asptutorial.info/
http://www.aspin.com/home/tutorial
http://devguru.aspin.com/
http://www.techiwarehouse.com/ASP/ASP_Tutorial.html
http://home.maconstate.edu/dadams/Tutorials/

ASP 3.0 Tutorial Manual

136 MAGTF Staff Training Program
April 2004



ASP 3.0 Tutorial Manual

J ﬁ % Marines

Tl..:. ﬂ'.n--: “‘- D—- n’l
Fas g

United States Marine Corps
MAGTTF Staff Training Program
2084 South Street
Quantico, VA 22134-5001

Point of Contacts

LtCol Michael J. Burke
burkemj@mstp.quantico.usmc.mil
(703) 784-4972 DSN 278

Capt Miguel A. Ayala
ayalama@mstp.quantico.usmc.mil
(703) 784-6001 DSN 278

MSTP web site:
www.mstp.usmc.mil

MAGTF Staff Training Program 137
April 2004


mailto:burkemj@mstp.quantico.usmc.mil
mailto:ayalama@mstp.quantico.usmc.mil
http://www.mstp.usmc.mil/

	HTML Basics
	Basic Structure of an HTML page
	TAGS
	Text Formatting
	Heading styles <H>…</H>
	Paragraph <P>…</P>
	Font <FONT>…</FONT>
	Bold <b>…</b>
	Italic <i>…</i>
	Underline <u>…</u>
	Font size <SIZE>…</SIZE>

	Break <BR>

	Tables
	Table Tag <Table>…</Table>
	Row <TR>…</TR>
	Row Alignment
	Vertical Alignment
	Background Color

	Column <TD>…</TD>
	Column and Vertical Alignment
	Background Color

	Heading <TH>…</TH>
	
	
	This is My Table




	Lists
	Unordered List
	The <UL> Tag
	Type Attribute
	Nesting Unordered Lists


	Ordered List
	The <OL> Tag
	Type Attribute
	Nesting Ordered Lists
	Start Attribute



	HTML Forms
	The <FORM> Tag
	NAME attribute
	ACTION attribute
	METHOD attribute

	<INPUT TYPE = “TEXT”> Tag
	Type attribute
	NAME attribute
	SIZE attribute

	<INPUT TYPE = “PASSWORD”> Tag
	Drop Down Lists
	The <SELECT> Tag
	NAME attribute
	SIZE attribute
	MULTIPLE attribute

	The <OPTION> Tag
	VALUE attribute


	The <INPUT TYPE = “SUBMIT”> Tag
	TYPE attribute
	NAME attribute
	VALUE attribute

	The <INPUT TYPE=”IMAGE”> Tag
	The <INPUT TYPE=”RESET”> Tag


	Getting Started
	What do we need to create a web site?
	Setting up the environment
	IIS 5.0 overview
	Installation


	Creating virtual directories
	Creating Virtual Directories With the Wizard
	Creating Virtual Directories Without the Wizard


	ASP Overview
	What are Active Server Pages?
	Composition of Active Server Pages?
	ASP Delimiters
	Setting the ASP Scripting Language
	Variables, Operators, and Statements
	Active Server Components and Objects

	Running ASP Scripts


	Lab 1:  Your First Code
	Hello World!
	Creating an HTML Page
	Creating your First ASP page


	Programming and Scripting in VBScript
	Differences between Visual Basic and Visual Basic Script
	Variables and Data Types
	Data types
	Variables
	Declaring Variables
	
	
	Dim Quantity
	Dim X, Y, Z
	Quantity = 10



	Naming Restrictions
	Constants


	Control Structures
	If…Then…Else
	Select Case

	Looping Structure
	For…Next
	Do…Loop
	While…Wend


	Processing user input request (Request Object)
	The Request Object
	How to get data from the user to the server?
	HTML Forms

	Processing results

	Lab 2:  Using a form to gather user input and displaying results
	Session Object
	Session Variables
	Assigning Session Variables
	Clearing Session Variables


	Lab 3:  Use of Session Variables
	Responding to the user (Response Object)
	How to send output to the user’s browser
	The Response Object
	Response.Write
	Response.Redirect

	Lab 4:  Responding to the user
	Database Overview
	Planning a database
	Database Structure
	Building the database in Microsoft Access
	Creating a Database
	Creating a Table



	Introduction to Structured Query Language (SQL)
	SQL Statements
	The SELECT Statement
	The WHERE Clause
	The ORDER BY Clause



	Accessing a Database
	The Connection Object
	Including ActiveX Data Objects (ADO) Constants
	Creating an ODBC connection
	ODBC Data Source Name (DSN)-less Connection
	DSN vs DSN-less

	The Recordset Object
	The Beginning of File (BOF) Object
	The End of File (EOF) Object

	Connecting to a Database
	Opening a Table
	Selecting Records
	Iterating thorough a Recordset
	Checking for Matching Records
	Closing Connections and Recordsets

	Updating a Database
	Adding records
	Updating records
	Deleting Records


	Lab 5:  Database Connection
	Putting it all together
	Linking pages

	Lab 6:  Alpha Roster (Final Product)
	Appendix A.  Final Product Description
	Appendix B.  VBScript Reference
	Appendix C. HTML Tags
	Appendix D.  ASP Objects
	Appendix E.  Helpful Websites
	Point of Contacts

